Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Direct relationship between the level of p53 stabilization induced by rRNA synthesis-inhibiting drugs and the cell ribosome biogenesis rate

Subjects

Abstract

Many drugs currently used in chemotherapy work by hindering the process of ribosome biogenesis. In tumors with functional p53, the inhibition of ribosome biogenesis may contribute to the efficacy of this treatment by inducing p53 stabilization. As the level of stabilized p53 is critical for the induction of cytotoxic effects, it seems useful to highlight those cancer cell characteristics that can predict the degree of p53 stabilization following the treatment with inhibitors of ribosome biogenesis. In the present study we exposed a series of p53 wild-type human cancer cell lines to drugs such as actinomycin D (ActD), doxorubicin, 5-fluorouracil and CX-5461, which hinder ribosomal RNA (rRNA) synthesis. We found that the amount of stabilized p53 was directly related to the level of ribosome biogenesis in cells before the drug treatment. This was due to different levels of inactivation of the ribosomal proteins–MDM2 pathway of p53 digestion. Inhibition of rRNA synthesis always caused cell cycle arrest, independent of the ribosome biogenesis rate of the cells, whereas apoptosis occurred only in cells with a high rDNA transcription rate. The level of p53 stabilization induced by drugs acting in different ways from the inhibition of ribosome biogenesis, such as hydroxyurea (HU) and nutlin-3, was independent of the level of ribosome biogenesis in cells and always lower than that occurring after the inhibition of rRNA synthesis. Interestingly, in cells with a low ribosome biogenesis rate, the combined treatment with ActD and HU exerted an additive effect on p53 stabilization. These results indicated that (i) drugs inhibiting ribosome biogenesis may be highly effective in p53 wild-type cancers with a high ribosome biogenesis rate, as they induce apoptotic cell death, and (ii) the combination of drugs capable of stabilizing p53 through different mechanisms may be useful for treating cancers with a low ribosome biogenesis rate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Vogelstein B, Lane D, Levine AJ . Surfing the p53 network. Nature 2000; 408: 307–310.

    Article  CAS  PubMed  Google Scholar 

  2. Johnstone RW, Ruefli AA, Lowe SW . Apoptosis. Cell 2002; 108: 153–164.

    Article  CAS  PubMed  Google Scholar 

  3. Vousden KH, Prives C . Blinded by the light: the growing complexity of p53. Cell 2009; 137: 413–431.

    Article  CAS  PubMed  Google Scholar 

  4. Harris SL, Levine AJ . The p53 pathway: positive and negative feedback loops. Oncogene 2005; 24: 2899–2908.

    Article  CAS  PubMed  Google Scholar 

  5. Vousden KH, Lu X . Live or let die: the cell’s response to p53. Nat Rev Cancer 2002; 2: 594–604.

    Article  CAS  PubMed  Google Scholar 

  6. Mayer C, Grummt I . Cellular stress and nucleolar function. Cell Cycle 2005; 4: 1036–1038.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Y, Lu H . Signaling to p53: ribosomal proteins find their way. Cancer Cell 2009; 16: 369–377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Deisenroth C, Zhang Y . Ribosome biogenesis surveillance: probing the ribosomal protein-Mdm2-p53 pathway. Oncogene 2010; 29: 4253–4260.

    Article  CAS  PubMed  Google Scholar 

  9. Hu W, Feng Z, Levine AJ . The regulation of multiple p53 stress responses is mediated through MDM2. Genes Cancer 2012; 3: 199–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Momand J, Zambetti GP, Olson DC, George D, Levine AJ . The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 1992; 69: 1237–1245.

    Article  CAS  PubMed  Google Scholar 

  11. Haupt Y, Maya R, Kazaz A, Oren M . Mdm2 promotes the rapid degradation of p53. Nature 1997; 387: 296–299.

    Article  CAS  PubMed  Google Scholar 

  12. Kubbutat MH, Jones SN, Vousden KH . Regulation of p53 stability by Mdm2. Nature 1997; 387: 299–303.

    Article  CAS  PubMed  Google Scholar 

  13. Gajjar M, Candeias MM, Malbert-Colas L, Mazars A, Fujita J, Olivares-Illana V et al. The p53 mRNA-Mdm2 interaction controls Mdm2 nuclear trafficking and is required for p53 activation following DNA damage. Cancer Cell 2012; 21: 25–35.

    Article  CAS  PubMed  Google Scholar 

  14. Lowe SW . Activation of p53 by oncogenes. Endocr Relat Cancer 1999; 6: 45–48.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Y, Wolf GW, Bhat K, Jin A, Allio T, Burkhart WA et al. Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway. Mol Cell Biol 2003; 23: 8902–8912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sun X-X, Dai M-S, Lu H . 5-fluorouracil activation of p53 involves an MDM2-ribosomal protein interaction. J Biol Chem 2007; 282: 8052–8059.

    Article  CAS  PubMed  Google Scholar 

  17. Sun X-X, Dai M-S, Lu H . Mycophenolic acid activation of p53 requires ribosomal proteins L5 and L11. J Biol Chem 2008; 283: 12387–12392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yuan X, Zhou Y, Casanova E, Chai M, Kiss E, Gröne H-J et al. Genetic inactivation of the transcription factor TIF-IA leads to nucleolar disruption, cell cycle arrest, and p53-mediated apoptosis. Mol Cell 2005; 19: 77–87.

    Article  CAS  PubMed  Google Scholar 

  19. Donati G, Bertoni S, Brighenti E, Vici M, Treré D, Volarevic S et al. The balance between rRNA and ribosomal protein synthesis up- and downregulates the tumour suppressor p53 in mammalian cells. Oncogene 2011; 30: 3274–3288.

    Article  CAS  PubMed  Google Scholar 

  20. Lohrum MAE, Ludwig RL, Kubbutat MHG, Hanlon M, Vousden KH . Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell 2003; 3: 577–587.

    Article  CAS  PubMed  Google Scholar 

  21. Bhat KP, Itahana K, Jin A, Zhang Y . Essential role of ribosomal protein L11 in mediating growth inhibition-induced p53 activation. EMBO J 2004; 23: 2402–2412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dai M-S, Lu H . Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. J Biol Chem 2004; 279: 44475–44482.

    Article  CAS  PubMed  Google Scholar 

  23. Dai M-S, Zeng SX, Jin Y, Sun X-X, David L, Lu H . Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition. Mol Cell Biol 2004; 24: 7654–7668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jin A, Itahana K, O’Keefe K, Zhang Y . Inhibition of HDM2 and activation of p53 by ribosomal protein L23. Mol Cell Biol 2004; 24: 7669–7680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Burger K, Mühl B, Harasim T, Rohrmoser M, Malamoussi A, Orban M et al. Chemotherapeutic drugs inhibit ribosome biogenesis at various levels. J Biol Chem 2010; 285: 12416–12425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Drygin D, Lin A, Bliesath J, Ho CB, O’Brien SE, Proffitt C et al. Targeting RNA polymerase I with an oral small molecule CX-5461 inhibits ribosomal RNA synthesis and solid tumor growth. Cancer Res 2011; 71: 1418–1430.

    Article  CAS  PubMed  Google Scholar 

  27. Bywater MJ, Poortinga G, Sanij E, Hein N, Peck A, Cullinane C et al. Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53. Cancer Cell 2012; 22: 51–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Drygin D, Siddiqui-Jain A, O’Brien S, Schwaebe M, Lin A, Bliesath J et al. Anticancer activity of CX-3543: a direct inhibitor of rRNA biogenesis. Cancer Res 2009; 69: 7653–7661.

    Article  CAS  PubMed  Google Scholar 

  29. Drygin D, Rice WG, Grummt I . The RNA polymerase I transcription machinery: an emerging target for the treatment of cancer. Annu Rev Pharmacol Toxicol 2010; 50: 131–156.

    Article  CAS  PubMed  Google Scholar 

  30. Chen X, Ko LJ, Jayaraman L, Prives C . p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells. Genes Dev 1996; 10: 2438–2451.

    Article  CAS  PubMed  Google Scholar 

  31. Perry RP, Kelley DE . Inhibition of RNA synthesis by actinomycin D: characteristic dose-response of different RNA species. J Cell Physiol 1970; 76: 127–139.

    Article  CAS  PubMed  Google Scholar 

  32. Derenzini M, Montanaro L, Chillà A, Tosti E, Vici M, Barbieri S et al. Key role of the achievement of an appropriate ribosomal RNA complement for G1-S phase transition in H4-II-E-C3 rat hepatoma cells. J Cell Physiol 2005; 202: 483–491.

    Article  CAS  PubMed  Google Scholar 

  33. Poortinga G, Quinn LM, Hannan RD . Targeting RNA polymerase I to treat MYC-driven cancer. Oncogene 2014 2015; 34: 403–412.

    CAS  Google Scholar 

  34. Burns TF, El-Deiry WS . The p53 pathway and apoptosis. J Cell Physiol 1999; 181: 231–239.

    Article  CAS  PubMed  Google Scholar 

  35. Sax JK, El-Deiry WS . p53-induced gene expression analysis. Methods Mol Biol 2003; 234: 65–71.

    CAS  PubMed  Google Scholar 

  36. Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D . p21 is a universal inhibitor of cyclin kinases. Nature 1993; 366: 701–704.

    Article  CAS  PubMed  Google Scholar 

  37. Sherr CJ, McCormick F . The RB and p53 pathways in cancer. Cancer Cell 2002; 2: 103–112.

    Article  CAS  PubMed  Google Scholar 

  38. Nakano K, Vousden KH . PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 2001; 7: 683–694.

    Article  CAS  PubMed  Google Scholar 

  39. Yu J, Zhang L . PUMA, a potent killer with or without p53. Oncogene 2008; 27: S71–S83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oltvai ZN, Milliman CL, Korsmeyer SJ . Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 1993; 74: 609–619.

    Article  CAS  PubMed  Google Scholar 

  41. Yin C, Knudson CM, Korsmeyer SJ, Van Dyke T . Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature 1997; 385: 637–640.

    Article  CAS  PubMed  Google Scholar 

  42. Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, van Oers MH . Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 1994; 84: 1415–1420.

    CAS  PubMed  Google Scholar 

  43. Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE, Poirier GG . Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res 1993; 53: 3976–3985.

    CAS  PubMed  Google Scholar 

  44. Porter AG, Jänicke RU . Emerging roles of caspase-3 in apoptosis. Cell Death Differ 1999; 6: 99–104.

    Article  CAS  PubMed  Google Scholar 

  45. Elledge SJ, Zhou Z, Allen JB . Ribonucleotide reductase: regulation, regulation, regulation. Trends Biochem Sci 1992; 17: 119–123.

    Article  CAS  PubMed  Google Scholar 

  46. Gottifredi V, Shieh S, Taya Y, Prives C . p53 accumulates but is functionally impaired when DNA synthesis is blocked. Proc Natl Acad Sci USA 2001; 98: 1036–1041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kapoor M, Hamm R, Yan W, Taya Y, Lozano G . Cooperative phosphorylation at multiple sites is required to activate p53 in response to UV radiation. Oncogene 2000; 19: 358–364.

    Article  CAS  PubMed  Google Scholar 

  48. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004; 303: 844–848.

    Article  CAS  PubMed  Google Scholar 

  49. Longley DB, Harkin DP, Johnston PG . 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 2003; 3: 330–338.

    Article  CAS  PubMed  Google Scholar 

  50. Oskarsson T, Trumpp A . The Myc trilogy: lord of RNA polymerases. Nat Cell Biol 2005; 7: 215–217.

    Article  CAS  PubMed  Google Scholar 

  51. Maggi LB, Weber JD . Nucleolar adaptation in human cancer. Cancer Invest 2005; 23: 599–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Montanaro L, Treré D, Derenzini M . Nucleolus, ribosomes, and cancer. Am J Pathol 2008; 173: 301–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Derenzini M, Montanaro L, Treré D . What the nucleolus says to a tumour pathologist. Histopathology 2009; 54: 753–762.

    Article  PubMed  Google Scholar 

  54. Derenzini M . The AgNORs. Micron 2000; 31: 117–120.

    Article  CAS  PubMed  Google Scholar 

  55. Bland JM . The tyranny of power: is there a better way to calculate sample size? BMJ 2009; 339: b3985.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Roberto and Cornelia Pallotti’s Legacy for Cancer Research and Associazione Italiana per la Ricerca sul Cancro (AIRC, grant number IG13480).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Derenzini.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scala, F., Brighenti, E., Govoni, M. et al. Direct relationship between the level of p53 stabilization induced by rRNA synthesis-inhibiting drugs and the cell ribosome biogenesis rate. Oncogene 35, 977–989 (2016). https://doi.org/10.1038/onc.2015.147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.147

This article is cited by

Search

Quick links