Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Isoprenylcysteine carboxylmethyltransferase regulates mitochondrial respiration and cancer cell metabolism

Abstract

Isoprenylcysteine carboxylmethyltransferase (Icmt) catalyzes the last of the three-step posttranslational protein prenylation process for the so-called CaaX proteins, which includes many signaling proteins, such as most small GTPases. Despite extensive studies on Icmt and its regulation of cell functions, the mechanisms of much of the impact of Icmt on cellular functions remain unclear. Our recent studies demonstrated that suppression of Icmt results in induction of autophagy, inhibition of cell growth and inhibition of proliferation in various cancer cell types, prompting this investigation of potential metabolic regulation by Icmt. We report here the findings that Icmt inhibition reduces the function of mitochondrial oxidative phosphorylation in multiple cancer cell lines. In-depth oximetry analysis demonstrated that functions of mitochondrial complex I, II and III are subject to Icmt regulation. Consistently, Icmt inhibition decreased cellular ATP and depleted critical tricarboxylic acid cycle metabolites, leading to suppression of cell anabolism and growth, and marked autophagy. Several different approaches demonstrated that the impact of Icmt inhibition on cell proliferation and viability was largely mediated by its effect on mitochondrial respiration. This previously unappreciated function of Icmt, which can be therapeutically exploited, likely has a significant role in the impact of Icmt on tumorigenic processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ashby MN . CaaX converting enzymes. Curr Opin Lipidol 1998; 9: 99–102.

    Article  CAS  Google Scholar 

  2. Winter-Vann AM, Casey PJ . Post-prenylation-processing enzymes as new targets in oncogenesis. Nat Rev Cancer 2005; 5: 405–412.

    Article  CAS  Google Scholar 

  3. Seabra MC . Membrane association and targeting of prenylated Ras-like GTPases. Cell Signal 1998; 10: 167–172.

    Article  CAS  Google Scholar 

  4. Bergo MO, Leung GK, Ambroziak P, Otto JC, Casey PJ, Young SG . Targeted inactivation of the isoprenylcysteine carboxyl methyltransferase gene causes mislocalization of K-Ras in mammalian cells. J Biol Chem 2000; 275: 17605–17610.

    Article  CAS  Google Scholar 

  5. Cushman I, Casey PJ . RHO methylation matters: a role for isoprenylcysteine carboxylmethyltransferase in cell migration and adhesion. Cell Adhes Migr 2011; 5: 11–15.

    Article  Google Scholar 

  6. Wahlstrom AM, Cutts BA, Liu M, Lindskog A, Karlsson C, Sjogren AK et al. Inactivating Icmt ameliorates K-RAS-induced myeloproliferative disease. Blood 2008; 112: 1357–1365.

    Article  CAS  Google Scholar 

  7. Bergo MO, Gavino BJ, Hong C, Beigneux AP, McMahon M, Casey PJ et al. Inactivation of Icmt inhibits transformation by oncogenic K-Ras and B-Raf. J Clin Invest 2004; 113: 539–550.

    Article  CAS  Google Scholar 

  8. Wang M, Tan W, Zhou J, Leow J, Go M, Lee HS et al. A small molecule inhibitor of isoprenylcysteine carboxymethyltransferase induces autophagic cell death in PC3 prostate cancer cells. J Biol Chem 2008; 283: 18678–18684.

    Article  CAS  Google Scholar 

  9. Wang M, Hossain MS, Tan W, Coolman B, Zhou J, Liu S et al. Inhibition of isoprenylcysteine carboxylmethyltransferase induces autophagic-dependent apoptosis and impairs tumor growth. Oncogene 2010; 29: 4959–4970.

    Article  CAS  Google Scholar 

  10. Mihaylova MM, Shaw RJ . The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 2011; 13: 1016–1023.

    Article  CAS  Google Scholar 

  11. Kim J, Kundu M, Viollet B, Guan KL . AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 2011; 13: 132–141.

    Article  CAS  Google Scholar 

  12. Krebs HA, Hems R . Phosphate-transfer reactions of adenosine and inosine nucleotides. Biochem J 1955; 61: 435–441.

    Article  CAS  Google Scholar 

  13. Berg P, Joklik WK . Transphosphorylation between nucleoside polyphosphates. Nature 1953; 172: 1008–1009.

    Article  CAS  Google Scholar 

  14. Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD et al. A protein conjugation system essential for autophagy. Nature 1998; 395: 395–398.

    Article  CAS  Google Scholar 

  15. Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y . The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J 2001; 20: 5971–5981.

    Article  CAS  Google Scholar 

  16. Barrientos A . In vivo and in organello assessment of OXPHOS activities. Methods 2002; 26: 307–316.

    Article  CAS  Google Scholar 

  17. Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 2011; 13: 376–388.

    Article  CAS  Google Scholar 

  18. Inoki K, Zhu T, Guan KL . TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003; 115: 577–590.

    Article  CAS  Google Scholar 

  19. Carling D, Zammit VA, Hardie DG . A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett 1987; 223: 217–222.

    Article  CAS  Google Scholar 

  20. Sato R, Goldstein JL, Brown MS . Replacement of serine-871 of hamster 3-hydroxy-3-methylglutaryl-CoA reductase prevents phosphorylation by AMP-activated kinase and blocks inhibition of sterol synthesis induced by ATP depletion. Proc Natl Acad Sci USA 1993; 90: 9261–9265.

    Article  CAS  Google Scholar 

  21. Hara K, Yonezawa K, Kozlowski MT, Sugimoto T, Andrabi K, Weng QP et al. Regulation of eIF-4E BP1 phosphorylation by mTOR. J Biol Chem 1997; 272: 26457–26463.

    Article  CAS  Google Scholar 

  22. Gingras AC, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF et al. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev 1999; 13: 1422–1437.

    Article  CAS  Google Scholar 

  23. Winter-Vann AM, Baron RA, Wong W, dela Cruz J, York JD, Gooden DM et al. A small-molecule inhibitor of isoprenylcysteine carboxyl methyltransferase with antitumor activity in cancer cells. Proc Natl Acad Sci USA 2005; 102: 4336–4341.

    Article  CAS  Google Scholar 

  24. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D . RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer 2011; 11: 761–774.

    Article  CAS  Google Scholar 

  25. King MP, Attardi G . Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 1989; 246: 500–503.

    Article  CAS  Google Scholar 

  26. Chandel NS, Schumacker PT . Cells depleted of mitochondrial DNA (rho0) yield insight into physiological mechanisms. FEBS Lett 1999; 454: 173–176.

    Article  CAS  Google Scholar 

  27. Potter VR . The biochemical approach to the cancer problem. Fed Proc 1958; 17: 691–697.

    CAS  PubMed  Google Scholar 

  28. King MP, Attardi G . Isolation of human cell lines lacking mitochondrial DNA. Methods Enzymol 1996; 264: 304–313.

    Article  CAS  Google Scholar 

  29. Vander Heiden MG, Cantley LC, Thompson CB . Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324: 1029–1033.

    Article  CAS  Google Scholar 

  30. Gregoire M, Morais R, Quilliam MA, Gravel D . On auxotrophy for pyrimidines of respiration-deficient chick embryo cells. Eur J Biochem/FEBS 1984; 142: 49–55.

    Article  CAS  Google Scholar 

  31. Neuzil J, Dong LF, Ramanathapuram L, Hahn T, Chladova M, Wang XF et al. Vitamin E analogues as a novel group of mitocans: anti-cancer agents that act by targeting mitochondria. Mol Aspects Med 2007; 28 (5-6): 607–645.

    Article  CAS  Google Scholar 

  32. Pathania D, Millard M, Neamati N . Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism. Adv Drug Deliv Rev 2009; 61: 1250–1275.

    Article  CAS  Google Scholar 

  33. Zhu WL, Hossain MS, Guo DY, Liu S, Tong H, Khakpoor A et al. A role for Rac3 GTPase in the regulation of autophagy. J Biol Chem 2011; 286: 35291–35298.

    Article  CAS  Google Scholar 

  34. Cordell RL, Hill SJ, Ortori CA, Barrett DA . Quantitative profiling of nucleotides and related phosphate-containing metabolites in cultured mammalian cells by liquid chromatography tandem electrospray mass spectrometry. J Chromatogr B 2008; 871: 115–124.

    Article  CAS  Google Scholar 

  35. Wu JY, Kao HJ, Li SC, Stevens R, Hillman S, Millington D et al. ENU mutagenesis identifies mice with mitochondrial branched-chain aminotransferase deficiency resembling human maple syrup urine disease. J Clin Invest 2004; 113: 434–440.

    Article  CAS  Google Scholar 

  36. An J, Muoio DM, Shiota M, Fujimoto Y, Cline GW, Shulman GI et al. Hepatic expression of malonyl-CoA decarboxylase reverses muscle, liver and whole-animal insulin resistance. Nat Med 2004; 10: 268–274.

    Article  CAS  Google Scholar 

  37. Millington DS, Terada N, Chace DH, Chen YT, Ding JH, Kodo N et al. The role of tandem mass spectrometry in the diagnosis of fatty acid oxidation disorders. Progr Clin Biol Res 1992; 375: 339–354.

    CAS  Google Scholar 

  38. Millington DS, Stevens RD . Acylcarnitines: analysis in plasma and whole blood using tandem mass spectrometry. Methods Mol Biol 2011; 708: 55–72.

    Article  CAS  Google Scholar 

  39. Chace DH, Millington DS, Terada N, Kahler SG, Roe CR, Hofman LF . Rapid diagnosis of phenylketonuria by quantitative analysis for phenylalanine and tyrosine in neonatal blood spots by tandem mass spectrometry. Clin Chem 1993; 39: 66–71.

    CAS  PubMed  Google Scholar 

  40. Jensen MV, Joseph JW, Ilkayeva O, Burgess S, Lu D, Ronnebaum SM et al. Compensatory responses to pyruvate carboxylase suppression in islet beta-cells. Preservation of glucose-stimulated insulin secretion. J Biol Chem 2006; 281: 22342–22351.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

These experiments were supported by grant from National Medical Research Council (NMRC) and Duke-NUS institutional funding. Wild-type and Icmt-null MEFs are from Dr M Bergo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Wang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teh, J., Zhu, W., Ilkayeva, O. et al. Isoprenylcysteine carboxylmethyltransferase regulates mitochondrial respiration and cancer cell metabolism. Oncogene 34, 3296–3304 (2015). https://doi.org/10.1038/onc.2014.260

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.260

This article is cited by

Search

Quick links