Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Tks5 activation in mesothelial cells creates invasion front of peritoneal carcinomatosis

Subjects

Abstract

Scirrhous gastric cancer is frequently associated with peritoneal dissemination, and the interaction of cancer cells with peritoneal mesothelial cells (PMCs) is crucial for the establishment of the metastasis in the peritoneum. Although cells derived from PMCs are detected within tumors of peritoneal carcinomatosis, how PMCs are incorporated into tumor architecture is not understood. The present study shows that PMCs create the invasion front of peritoneal carcinomatosis, which depends on activation of Tks5 in PMCs. In peritoneal tumor implants, PMCs represent majority of cells located at the invasive edge of the cancer tissue. Exogenously implanted PMCs and host PMCs aggressively invade into abdominal wall upon the peritoneal inoculation of cancer cells, and PMCs locate ahead of cancer cells in the direction of invasion. Tks5, a substrate of Src kinase, is predominantly expressed in the PMCs of cancer tissue, and promotes the invasion of PMCs and cancer cells. Expression and activation of Tks5 was induced in PMCs following their exposure to gastric cancer cells, and increased Tks5 expression was detected in PMCs located at the invasion front. Reduced Tks5 expression in PMCs blocked PMC invasion, which in turn prevents cancer cell invasion both in vitro and in vivo. The peritoneal dissemination of gastric cancer was significantly increased by mixing cancer cells and PMCs, and was suppressed by knockdown of Tks5 in PMCs. These results suggest that cancer-activated PMCs create invasion front by guiding cancer cells. Signaling leading to Tks5 activation in PMCs may be a suitable therapeutic target for prevention of peritoneal carcinomatosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Otsuji E, Kuriu Y, Okamoto K, Ochiai T, Ichikawa D, Hagiwara A et al. Outcome of surgical treatment for patients with scirrhous carcinoma of the stomach. Am J Surg 2004; 188: 327–332.

    Article  Google Scholar 

  2. Takemura S, Yashiro M, Sunami T, Tendo M, Hirakawa K Novel models for human scirrhous gastric carcinoma in vivo. Cancer Sci 2004; 95: 893–900.

    Article  CAS  Google Scholar 

  3. Nashimoto A, Akazawa K, Isobe Y, Miyashiro I, Katai H, Kodera Y et al. Gastric cancer treated in 2002 in Japan: 2009 annual report of the JGCA nationwide registry. Gastric Cancer 2013; 16: 1–27.

    Article  Google Scholar 

  4. Schauer M, Peiper M, Theisen J, Knoefel W Prognostic factors in patients with diffuse type gastric cancer (linitis plastica) after operative treatment. Eur J Med Res 2011; 16: 29–33.

    Article  CAS  Google Scholar 

  5. Yonemura Y, Endou Y, Sasaki T, Hirano M, Mizumoto A, Matsuda T et al. Surgical treatmentfor peritoneal carcinomatosis from gastric cancer. Eur J Surg Oncol 2010; 36: 1131–1138.

    Article  CAS  Google Scholar 

  6. Yashiro M, Hirakawa K Cancer-stromal interactions in scirrhous gastric carcinoma. Cancer Microenviron 2010; 3: 127–135.

    Article  CAS  Google Scholar 

  7. Tsukada T, Fushida S, Harada S, Yagi Y, Kinoshita J, Oyama K et al. The role of human peritoneal mesothelial cells in the fibrosis and progression of gastric cancer. Int J Oncol 2012; 41: 476–482.

    Article  CAS  Google Scholar 

  8. Mutsaers SE The mesothelial cell. Int J Biochem Cell Biol 2004; 36: 9–16.

    Article  CAS  Google Scholar 

  9. Yung S, Chan TM Intrinsic cells: mesothelial cells—central players in regulating inflammation and resolution. Perit Dial Int 2009; 29: S21–S27.

    CAS  PubMed  Google Scholar 

  10. Jayne DG, Perry SL, Morrison E, Farmery SM, Guillou PJ Activated mesothelial cells produce heparin-binding growth factors: implications for tumour metastasis. Br J Cancer 2000; 82: 1233–1238.

    Article  CAS  Google Scholar 

  11. Sako A, Kitayama J, Yamaguchi H, Kaisaki S, Suzuki H, Fukatsu K et al. Vascular endothelial growth factor synthesis by human omental mesothelial cells is augmented by fibroblast growth factor-2: possible role of mesothelial cell on the development of peritoneal metastasis. J Surg Res 2003; 115: 113–120.

    Article  CAS  Google Scholar 

  12. Yanez-Mo M, Lara-Pezzi E, Selgas R, Ramírez-Huesca M, Domínguez-Jeménez C, Jiménez-Heffernan JA et al. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N Eng J Med 2003; 348: 403–413.

    Article  Google Scholar 

  13. Aroeira LS, Aguilera A, Selgas R, Ramirez-Huesca M, Perez-Lozano ML, Cirugeda A et al. Mesenchymal conversion of mesothelial cells as a mechanism responsible for high solute transport rate in peritoneal dialysis: role of vascular endothelial growth factor. Am J Kidney Dis 2005; 46: 938–948.

    Article  CAS  Google Scholar 

  14. Aroeira LS, Aguilera A, Sánchez-Tomero JA, Bajo MA, del Peso G, Jimenez-Heffernan JA et al. Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions. J Am Soc Nephrol 2007; 18: 2004–2013.

    Article  CAS  Google Scholar 

  15. Kajiyama H, Shibata K, Ino K, Nawa A, Mizutani S, Kikkawa F Possible involvement of SDF-1alpha/CXCR4-DPP IV axis in TGF-beta1-induced enhancement of migratory potential in human peritoneal mesothelial cells. Cell Tissue Res 2007; 330: 221–229.

    Article  CAS  Google Scholar 

  16. Sandoval P, Jiménez-Heffernan JA, Rynne-Vidal Á, Pérez-Lozano ML, Gilsanz Á, Ruiz-Carpio V et al. Carcinoma-associated fibroblasts derive from mesothelial cells via mesothelial-to-mesenchymal transition in peritoneal metastasis. J Pathol 2013; 231: 517–531.

    Article  CAS  Google Scholar 

  17. Lv ZD, Wang HB, Dong Q, Kong B, Li JG, Yang ZC et al. Mesothelial cels differentiate into fibroblast-like cells under the scirrhous gastric cancer microenvironment and promote peritoneal carcinomatosis in vitro and in vivo. Mol Cell Biochem 2013; 377: 177–185.

    Article  CAS  Google Scholar 

  18. Abram CL, Seals DF, Pass I, Salinsky D, Maurer L, Roth TM et al. The adaptor protein Fish associates with members of the ADAMs family and localizes to podosomes of Src-transformed cells. J BiolChem 2003; 278: 16844–16851.

    CAS  Google Scholar 

  19. Blouw B, Seals DF, Pass I, Diaz B, Courtneidge SA A role for podosome/invadopodia scaffold protein Tks5 in tumor growth in vivo. Eur J Cell Biol 2008; 87: 555–567.

    Article  CAS  Google Scholar 

  20. Burger KL, Davis AL, Isom S, Mishra N, Seals DF The podosome marker protein Tks5 regulates macrophage invasive behavior. Cytoskeleton 2011; 68: 694–711.

    Article  CAS  Google Scholar 

  21. Courtneidge SA Cell migration and invasion in human disease: the Tks adaptor proteins. Biochem Soc Trans 2012; 40: 129–132.

    Article  CAS  Google Scholar 

  22. Weaver AM Invadopodia: specialized cell structures for cancer invasion. Clin Exp Metastasis 2006; 23: 97–105.

    Article  Google Scholar 

  23. Yamaguchi H, Condeelis J Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim Biophys Acta 2007; 1773: 642–652.

    Article  CAS  Google Scholar 

  24. Linder S The matrix corroded: podosomes and invadopodia in extracellular matrix degradation. Trends Cell Biol 2007; 17: 107–117.

    Article  CAS  Google Scholar 

  25. Gimona M, Buccione R, Courtneidge SA, Linder S Assembly and biological role of podosomes and invadopodia. Curr Opin Cell Biol 2008; 20: 235–241.

    Article  CAS  Google Scholar 

  26. Murphy DA, Courtneidge SA The ‘ins’ and ‘outs’ of podosomes and invadopodia: characteristics, formation and function. Nat Rev Mol Cell Biol 2012; 12: 413–426.

    Article  Google Scholar 

  27. Li CMC, Chen G, Dayton TL, Kim-Kiselak C, Hoersch S, Whittaker CA et al. Differential Tks5 isoform expression contributes to metastatic invasion of lung adenocarcinoma. Genes Dev 2013; 27: 1557–1567.

    Article  CAS  Google Scholar 

  28. Oikawa T, Itoh T, Takenawa T Sequential signals toward podosomeformation in NIH-src cells. J Cell Biol 2008; 182: 157–169.

    Article  CAS  Google Scholar 

  29. Stylli SS, Stacey TT, Verhagen AM, Xu SS, Pass I, Courtneidge SA et al. Nck adaptor proteins link Tks5 to invadopodia actin regulation and ECM degradation. J Cell Sci 2009; 122: 2727–2740.

    Article  CAS  Google Scholar 

  30. Fekete A, Bogel G, Pesti S, Péterfi Z, Geiszt M, Buday L . EGF regulates tyrosine phosphorylation and membrane-translocation of the scaffold protein Tks5. J Mol Sinal 2013; 8: 8.

    Article  Google Scholar 

  31. Murphy DA, Diaz B, Bromann PA, Tsai JH, Kawakami Y, Maurer J et al. A Src-Tks5 pathway is required for neural crest cell migration during embryonic development. PLos ONE 2011; 6: e22499.

    Article  CAS  Google Scholar 

  32. Yanagihara K, Takigahira M, Tanaka H, Komatsu T, Fukumoto H, Koizumi F Development and biological analysis of peritoneal metastasis mouse models for human scirrhous stomach cancer. Cancer Sci 2005; 96: 323–332.

    Article  CAS  Google Scholar 

  33. Fuyuhiro Y, Yashiro M, Noda S, Kashiwagi S, Matsuoka J, Doi Y et al. Upregulation of cancer-associated myofibroblasts by TGF-β from scirrhous gastric carcinoma cells. Br J Cancer 2011; 105: 996–1001.

    Article  CAS  Google Scholar 

  34. Satoyoshi R, Kuriyama S, Aiba N, Yashiro M, Tanaka M . Asporin activates coordinated invasion of scirrhous gastric cancer and cancer associated fibroblasts. Oncogene 2014 e-pub ahead of print 20 January (doi:10.1038/onc.2013.584).

    Article  Google Scholar 

  35. Shama VP, Eddy R, Entenberg D, Kai M, Gertler FB, Condeelis J . Tks5 and SHIP2 regulate invadopodium maturation, but not initiation, in breast carcinoma cells. Curr Biol 2014; 23: 2079–2089.

    Article  Google Scholar 

  36. Seals DF, Azucena EF Jr, Pass I, Tesfay L, Gordon R, Woodrow M et al. The adaptor protein Tks5/Fish is required for podosome formation and function, and for the protease-driven invasion of cancer cells. Cancer Cell 2005; 7: 155–165.

    Article  CAS  Google Scholar 

  37. Burger KL, Learman BS, Boucherle AK, Sirintrapun SJ, Isom S, Diaz B et al. Src-dependent Tks5 phosphorylation regulates invadopodia-associated invasion in prostate cancer cells. Prostate 2013; 74: 134–148.

    Article  Google Scholar 

  38. Nishimura S, Hirakawa K, Yashiro M, Inoue T, Matsuoka T, Fujihara T et al. TGF-β1 produced by gastric cancer cells affects mesothelial cell morphology in peritoneal dissemination. Int J Oncol 1998; 12: 847–851.

    CAS  PubMed  Google Scholar 

  39. Yanagihara K, Tanaka H, Takigahira M, Ino Y, Yamaguchi Y, Toge T et al. Establishment of two cell lines from human gastric scirrhous carcinoma that possess the potential to metastasize spontaneously in nude mice. Cancer Sci 2004; 95: 575–582.

    Article  CAS  Google Scholar 

  40. Motoyama T, Hojo H, Watanabe H Comparison of seven cell lines derived from human gastric carcinomas. Acta Pathol Jpn 1986; 36: 65–83.

    CAS  Google Scholar 

  41. Shimamura S, Sasaki K, Tanaka M The Src substrate SKAP2 regulates actin assembly by interacting with WAVE2 and cortactin proteins. J Biol Chem 2013; 288: 1171–1183.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Murata K (Department of Environmental Health Sciences, Akita University School of Medicine) for advice and discussion about statistics. This work was supported by JSPS KAKENHI (Grant Nos 25290042 and 26640068 to MT) Takeda Science Foundation (MT) and the National Cancer Center Research and Development Fund (Grant No. 23-A-9 to MT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Tanaka.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satoyoshi, R., Aiba, N., Yanagihara, K. et al. Tks5 activation in mesothelial cells creates invasion front of peritoneal carcinomatosis. Oncogene 34, 3176–3187 (2015). https://doi.org/10.1038/onc.2014.246

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.246

This article is cited by

Search

Quick links