Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Thrombospondin-1 repression is mediated via distinct mechanisms in fibroblasts and epithelial cells

A Corrigendum to this article was published on 28 May 2015

This article has been updated

Abstract

Tumor-associated angiogenesis is postulated to be regulated by the balance between pro- and anti-angiogenic factors. We demonstrate here that the critical step in establishing the angiogenic capability of human tumor cells is the repression of a key secreted anti-angiogenic factor, thrombospondin-1 (Tsp-1). This repression is essential for tumor formation by mammary epithelial cells and kidney cells engineered to express SV40 early region proteins, hTERT, and H-RasV12. In transformed epithelial cells, a signaling pathway leading from Ras to Tsp-1 repression induces the sequential activation of PI3 kinase, Rho and ROCK, leading to activation of Myc through phosphorylation, thereby enabling Myc to repress Tsp-1 transcription. In transformed fibroblasts, however, the repression of Tsp-1 can be achieved by an alternative mechanism involving inactivation of both p53 and pRb. We thus describe novel mechanisms by which the activation of oncogenes in epithelial cells and the inactivation of tumor suppressors in fibroblasts permits angiogenesis and, in turn, tumor formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Change history

  • 28 May 2015

    This paper has been corrected since online publication and a corrigendum appears in this issue

References

  1. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA . The hallmarks of cancer. Cell 2000; 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  3. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB et al. Extension of life-span by introduction of telomerase into normal human cells. Science 1998; 279: 349–352.

    CAS  PubMed  Google Scholar 

  4. Kiyono T, Foster SA, Koop JI, McDougall JK, Galloway DA, Klingelhutz AJ . Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 1998; 396: 84–88.

    CAS  PubMed  Google Scholar 

  5. Brown LF, Guidi AJ, Schnitt SJ, Van De Water L, Iruela Arispe ML, Yeo TK et al. Vascular stroma formation in carcinoma in situ, invasive carcinoma, and metastatic carcinoma of the breast. Clin Cancer Res 1999; 5: 1041–1056.

    CAS  PubMed  Google Scholar 

  6. MacDougall JR, Matrisian LM . Contributions of tumor and stromal matrix metalloproteinases to tumor progression, invasion and metastasis. Cancer Metastasis Rev 1995; 14: 351–362.

    CAS  PubMed  Google Scholar 

  7. Berse B, Brown LF, Van de Water L, Dvorak HF, Senger DR . Vascular permeability factor (vascular endothelial growth factor) gene is expressed differentially in normal tissues, macrophages, and tumors. Mol Biol Cell 1992; 3: 211–220.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ou YC, Chen JT, Yang CR, Horng YY, Kao YL, Cheng CL . Tumor angiogenesis and metastasis: correlation in invasive renal cell carcinoma. Zhonghua Yi Xue Za Zhi (Taipei) 1998; 61: 441–447.

    CAS  Google Scholar 

  9. Weidner N, Semple JP, Welch WR, Folkman J . Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. New Engl J Med 1991; 324: 1–8.

    CAS  PubMed  Google Scholar 

  10. Xiangming C, Hokita S, Natsugoe S, Tanabe G, Baba M, Takao S et al. Angiogenesis as an unfavorable factor related to lymph node metastasis in early gastric cancer. Ann Surg Oncol 1998; 5: 585–589.

    CAS  PubMed  Google Scholar 

  11. Coussens LM, Raymond WW, Bergers G, Laig-Webster M, Behrendtsen O, Werb Z et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 1999; 13: 1382–1397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hanahan D, Christofori G, Naik P, Arbeit J . Transgenic mouse models of tumour angiogenesis: the angiogenic switch, its molecular controls, and prospects for preclinical therapeutic models. Eur J Cancer 1996; 32A: 2386–2393.

    CAS  PubMed  Google Scholar 

  13. Hanahan D, Folkman J . Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996; 86: 353–364.

    Article  CAS  PubMed  Google Scholar 

  14. Holmgren L, O'Reilly MS, Folkman J . Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression [see comments]. Nat Med 1995; 1: 149–153.

    CAS  PubMed  Google Scholar 

  15. Olive PL, Vikse C, Trotter MJ . Measurement of oxygen diffusion distance in tumor cubes using a fluorescent hypoxia probe. Int J Radiat Oncol Biol Phys 1992; 22: 397–402.

    CAS  PubMed  Google Scholar 

  16. Folkman J, Hanahan D . Switch to the angiogenic phenotype during tumorigenesis. Princess Takamatsu Symp 1991; 22: 339–347.

    CAS  PubMed  Google Scholar 

  17. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N . Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989; 246: 1306–1309.

    CAS  PubMed  Google Scholar 

  18. Rogelj S, Weinberg RA, Fanning P, Klagsbrun M . Basic fibroblast growth factor fused to a signal peptide transforms cells. Nature 1988; 331: 173–175.

    CAS  PubMed  Google Scholar 

  19. Wojta J, Kaun C, Breuss JM, Koshelnick Y, Beckmann R, Hattey E et al. Hepatocyte growth factor increases expression of vascular endothelial growth factor and plasminogen activator inhibitor-1 in human keratinocytes and the vascular endothelial growth factor receptor flk-1 in human endothelial cells. Lab Invest 1999; 79: 427–438.

    CAS  PubMed  Google Scholar 

  20. Zhang YW, Su Y, Volpert OV, Vande Woude GF . Hepatocyte growth factor/scatter factor mediates angiogenesis through positive VEGF and negative thrombospondin 1 regulation. Proc Natl Acad Sci USA 2003; 100: 12718–12723.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Motro B, Itin A, Sachs L, Keshet E . Pattern of interleukin 6 gene expression in vivo suggests a role for this cytokine in angiogenesis. Proc Natl Acad Sci USA 1990; 87: 3092–3096.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Koch AE, Polverini PJ, Kunkel SL, Harlow LA, DiPietro LA, Elner VM et al. Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 1992; 258: 1798–1801.

    CAS  PubMed  Google Scholar 

  23. Good DJ, Polverini PJ, Rastinejad F, Le Beau MM, Lemons RS, Frazier WA et al. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci USA 1990; 87: 6624–6628.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. O'Reilly MS, Holmgren L, Chen C, Folkman J . Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med 1996; 2: 689–692.

    CAS  PubMed  Google Scholar 

  25. O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88: 277–285.

    CAS  PubMed  Google Scholar 

  26. Maeshima Y, Sudhakar A, Lively JC, Ueki K, Kharbanda S, Kahn CR et al. Tumstatin, an endothelial cell-specific inhibitor of protein synthesis. Science 2002; 295: 140–143.

    CAS  PubMed  Google Scholar 

  27. Eriksson A, Cao R, Pawliuk R, Berg SM, Tsang M, Zhou D et al. Placenta growth factor-1 antagonizes VEGF-induced angiogenesis and tumor growth by the formation of functionally inactive PlGF-1/VEGF heterodimers. Cancer Cell 2002; 1: 99–108.

    CAS  PubMed  Google Scholar 

  28. Rodriguez Manzaneque JC, Lane TF, Ortega MA, Hynes RO, Lawler J, Iruela Arispe ML . Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc Natl Acad Sci USA 2001; 98: 12485–12490.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ribatti D, Alessandri G, Vacca A, Iurlaro M, Ponzoni M . Human neuroblastoma cells produce extracellular matrix-degrading enzymes, induce endothelial cell proliferation and are angiogenic in vivo. Int J Cancer 1998; 77: 449–454.

    CAS  PubMed  Google Scholar 

  30. Dawson DW, Pearce SF, Zhong R, Silverstein RL, Frazier WA, Bouck NP . CD36 mediates the In vitro inhibitory effects of thrombospondin-1 on endothelial cells. J Cell Biol 1997; 138: 707–717.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Short SM, Derrien A, Narsimhan RP, Lawler J, Ingber DE, Zetter BR . Inhibition of endothelial cell migration by thrombospondin-1 type-1 repeats is mediated by beta1 integrins. J Cell Biol 2005; 168: 643–653.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Elenbaas B, Spirio L, Koerner F, Fleming MD, Zimonjic DB, Donaher JL et al. Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev 2001; 15: 50–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 2006; 38: 1060–1065.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Fleming JB, Shen GL, Holloway SE, Davis M, Brekken RA . Molecular consequences of silencing mutant K-ras in pancreatic cancer cells: justification for K-ras-directed therapy. Mol Cancer Res 2005; 3: 413–423.

    CAS  PubMed  Google Scholar 

  35. Rak J, Mitsuhashi Y, Sheehan C, Tamir A, Viloria_Petit A, Filmus J et al. Oncogenes and tumor angiogenesis: differential modes of vascular endothelial growth factor up-regulation in ras-transformed epithelial cells and fibroblasts. Cancer Res 2000; 60: 490–498.

    CAS  PubMed  Google Scholar 

  36. Udagawa T, Fernandez A, Achilles EG, Folkman J, D_Amato RJ . Persistence of microscopic human cancers in mice: alterations in the angiogenic balance accompanies loss of tumor dormancy. FASEB J 2002; 16: 1361–1370.

    CAS  PubMed  Google Scholar 

  37. Venkatesha S, Hanai J, Seth P, Karumanchi SA, Sukhatme VP . Lipocalin 2 antagonizes the proangiogenic action of ras in transformed cells. Mol Cancer Res 2006; 4: 821–829.

    CAS  PubMed  Google Scholar 

  38. Castle V, Varani J, Fligiel S, Prochownik EV, Dixit V . Antisense-mediated reduction in thrombospondin reverses the malignant phenotype of a human squamous carcinoma. J Clin Invest 1991; 87: 1883–1888.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Burger P, Hilarius-Stokman P, de Korte D, van den Berg TK, van Bruggen R . CD47 functions as a molecular switch for erythrocyte phagocytosis. Blood 2012; 119: 5512–5521.

    CAS  PubMed  Google Scholar 

  40. Martin-Manso G, Galli S, Ridnour LA, Tsokos M, Wink DA, Roberts DD . Thrombospondin 1 promotes tumor macrophage recruitment and enhances tumor cell cytotoxicity of differentiated U937 cells. Cancer Res 2008; 68: 7090–7099.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Li Y, Qi X, Tong X, Wang S . Thrombospondin 1 activates the macrophage Toll-like receptor 4 pathway. Cell Mol Immunol 2013; 10: 506–512.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR . Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev 2000; 14: 2501–2514.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ngo CV, Gee M, Akhtar N, Yu D, Volpert O, Auerbach R et al. An in vivo function for the transforming Myc protein: elicitation of the angiogenic phenotype. Cell Growth Differ 2000; 11: 4.

    Google Scholar 

  44. Tikhonenko AT, Black DJ, Linial ML . Viral Myc oncoproteins in infected fibroblasts down-modulate thrombospondin-1, a possible tumor suppressor gene. J Biol Chem 1996; 271: 30741–30747.

    CAS  PubMed  Google Scholar 

  45. Adhikary S, Peukert K, Karsunky H, Beuger V, Lutz W, Elsasser HP et al. Miz1 is required for early embryonic development during gastrulation. Mol Cell Biol 2003; 23: 7648–7657.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Li LH, Nerlov C, Prendergast G, MacGregor D, Ziff EB . c-Myc represses transcription in vivo by a novel mechanism dependent on the initiator element and Myc box II. EMBO J 1994; 13: 4070–4079.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Little CD, Nau MM, Carney DN, Gazdar AF, Minna JD . Amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature 1983; 306: 194–196.

    CAS  PubMed  Google Scholar 

  48. Seshadri R, Matthews C, Dobrovic A, Horsfall DJ . The significance of oncogene amplification in primary breast cancer. Int J Cancer 1989; 43: 270–272.

    CAS  PubMed  Google Scholar 

  49. Trent J, Meltzer P, Rosenblum M, Harsh G, Kinzler K, Mashal R et al. Evidence for rearrangement, amplification, and expression of c-myc in a human glioblastoma. Proc Natl Acad Sci USA 1986; 83: 470–473.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gupta S, Seth A, Davis RJ . Transactivation of gene expression by Myc is inhibited by mutation at the phosphorylation sites Thr-58 and Ser-62. Proc Natl Acad Sci USA 1993; 90: 3216–3220.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Seth A, Alvarez E, Gupta S, Davis RJ . A phosphorylation site located in the NH2-terminal domain of c-Myc increases transactivation of gene expression. J Biol Chem 1991; 266: 23521–23524.

    CAS  PubMed  Google Scholar 

  52. Littlewood TD, Hancock DC, Danielian PS, Parker MG, Evan GI . A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res 1995; 23: 1686–1690.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. MacGregor D, Li LH, Ziff EB . Dominant negative mutants of Myc inhibit cooperation of both Myc and adenovirus serotype-5 E1a with Ras. J Cell Physiol 1996; 167: 95–105.

    CAS  PubMed  Google Scholar 

  54. Noguchi K, Kitanaka C, Yamana H, Kokubu A, Mochizuki T, Kuchino Y . Regulation of c-Myc through phosphorylation at Ser-62 and Ser-71 by c-Jun N-terminal kinase. J Biol Chem 1999; 274: 32580–32587.

    CAS  PubMed  Google Scholar 

  55. Lutterbach B, Hann SR . Hierarchical phosphorylation at N-terminal transformation-sensitive sites in c-Myc protein is regulated by mitogens and in mitosis. Mol Cell Biol 1994; 14: 5510–5522.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. White MA, Nicolette C, Minden A, Polverino A, Van_Aelst L, Karin M et al. Multiple Ras functions can contribute to mammalian cell transformation. Cell 1995; 80: 533–541.

    CAS  PubMed  Google Scholar 

  57. Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS et al. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 1998; 273: 18623–18632.

    CAS  PubMed  Google Scholar 

  58. Vlahos CJ, Matter WF, Hui KY, Brown RF . A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem 1994; 269: 5241–5248.

    CAS  PubMed  Google Scholar 

  59. White E . The pims and outs of survival signaling: role for the Pim-2 protein kinase in the suppression of apoptosis by cytokines. Genes Dev 2003; 17: 1813–1816.

    CAS  PubMed  Google Scholar 

  60. Franke TF, Yang SI, Chan TO, Datta K, Kazlauskas A, Morrison DK et al. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 1995; 81: 727–736.

    CAS  PubMed  Google Scholar 

  61. Ramaswamy S, Nakamura N, Vazquez F, Batt DB, Perera S, Roberts TM et al. Regulation of G1 progression by the PTEN tumor suppressor protein is linked to inhibition of the phosphatidylinositol 3-kinase/Akt pathway. Proc Natl Acad Sci USA 1999; 96: 2110–2115.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hoover RR, Gerlach MJ, Koh EY, Daley GQ . Cooperative and redundant effects of STAT5 and Ras signaling in BCR/ABL transformed hematopoietic cells. Oncogene 2001; 20: 5826–5835.

    CAS  PubMed  Google Scholar 

  63. Holsinger LJ, Spencer DM, Austin DJ, Schreiber SL, Crabtree GR . Signal transduction in T lymphocytes using a conditional allele of Sos. Proc Natl Acad Sci USA 1995; 92: 9810–9814.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ren XD, Schwartz MA . Determination of GTP loading on Rho. Methods Enzymol 2000; 325: 264–272.

    CAS  PubMed  Google Scholar 

  65. Olson MF, Ashworth A, Hall A . An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science 1995; 269: 1270–1272.

    CAS  PubMed  Google Scholar 

  66. Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A . The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 1992; 70: 401–410.

    CAS  PubMed  Google Scholar 

  67. Leung T, Chen XQ, Manser E, Lim L . The p160 RhoA-binding kinase ROK alpha is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Mol Cell Biol 1996; 16: 5313–5327.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Matsui T, Amano M, Yamamoto T, Chihara K, Nakafuku M, Ito M et al. Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J 1996; 15: 2208–2216.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 1997; 389: 990–994.

    CAS  PubMed  Google Scholar 

  70. Sahai E, Ishizaki T, Narumiya S, Treisman R . Transformation mediated by RhoA requires activity of ROCK kinases. Curr Biol 1999; 9: 136–145.

    CAS  PubMed  Google Scholar 

  71. Cardone RA, Bagorda A, Bellizzi A, Busco G, Guerra L, Paradiso A et al. Protein kinase A gating of a pseudopodial-located RhoA/ROCK/p38/NHE1 signal module regulates invasion in breast cancer cell lines. Mol Biol Cell 2005; 16: 3117–3127.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. He Z, Cho YY, Liu G, Ma WY, Bode AM, Dong Z . p38 Mitogen-activated protein kinase regulation of JB6 Cl41 cell transformation promoted by epidermal growth factor. J Biol Chem 2003; 278: 26435–26442.

    CAS  PubMed  Google Scholar 

  73. Gould GW, Cuenda A, Thomson FJ, Cohen P . The activation of distinct mitogen-activated protein kinase cascades is required for the stimulation of 2-deoxyglucose uptake by interleukin-1 and insulin-like growth factor-1 in KB cells. Biochem J 1995; 311 (Pt 3): 735–738.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Jallal B, Schlessinger J, Ullrich A . Tyrosine phosphatase inhibition permits analysis of signal transduction complexes in p185HER2/neu-overexpressing human tumor cells. J Biol Chem 1992; 267: 4357–4363.

    CAS  PubMed  Google Scholar 

  75. Kozma SC, Bogaard ME, Buser K, Saurer SM, Bos JL, Groner B et al. The human c-Kirsten ras gene is activated by a novel mutation in codon 13 in the breast carcinoma cell line MDA-MB231. Nucleic Acids Res 1987; 15: 5963–5971.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Singhal RL, Yeh YA, Look KY, Sledge GW, Weber G . Coordinated increase in activities of the signal transduction enzymes PI kinase and PIP kinase in human cancer cells. Life Sci 1994; 55: 1487–1492.

    CAS  PubMed  Google Scholar 

  77. Dubik D, Dembinski TC, Shiu RP . Stimulation of c-myc oncogene expression associated with estrogen-induced proliferation of human breast cancer cells. Cancer Res 1987; 47 (24 Pt 1): 6517–6521.

    CAS  PubMed  Google Scholar 

  78. Rummukainen J, Kytola S, Karhu R, Farnebo F, Larsson C, Isola JJ . Aberrations of chromosome 8 in 16 breast cancer cell lines by comparative genomic hybridization, fluorescence in situ hybridization, and spectral karyotyping. Cancer Genet Cytogenet 2001; 126: 1–7.

    CAS  PubMed  Google Scholar 

  79. Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA . Creation of human tumour cells with defined genetic elements. Nature 1999; 400: 464–468.

    CAS  PubMed  Google Scholar 

  80. Rak J, Mitsuhashi Y, Bayko L, Filmus J, Shirasawa S, Sasazuki T et al. Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res 1995; 55: 4575–4580.

    CAS  PubMed  Google Scholar 

  81. Pipas JM, Levine AJ . Role of T antigen interactions with p53 in tumorigenesis. Semin Cancer Biol 2001; 11: 23–30.

    CAS  PubMed  Google Scholar 

  82. Prives C, Beck Y, Gidoni D, Oren M, Shure H . DNA binding and sedimentation properties of SV40 T antigens synthesized in vivo and in vitro. Cold Spring Harb Symp Quant Biol 1980; 44 (Pt 1): 123–130.

    CAS  PubMed  Google Scholar 

  83. Rundell K, Parakati R . The role of the SV40 ST antigen in cell growth promotion and transformation. Semin Cancer Biol 2001; 11: 5–13.

    CAS  PubMed  Google Scholar 

  84. Shenk TE, Berg P . Isolation and propagation of a segment of the simian virus 40 genome containing the origin of DNA replication. Proc Natl Acad Sci USA 1976; 73: 1513–1517.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Shenk TE, Carbon J, Berg P . Construction and analysis of viable deletion mutants of simian virus 40. J Virol 1976; 18: 664–671.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Volckaert G, Feunteun J, Crawford LV, Berg P, Fiers W . Nucleotide sequence deletions within the coding region for small-t antigen of simian virus 40. J Virol 1979; 30: 674–682.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Zerrahn J, Knippschild U, Winkler T, Deppert W . Independent expression of the transforming amino-terminal domain of SV40 large I antigen from an alternatively spliced third SV40 early mRNA. EMBO J 1993; 12: 4739–4746.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Beachy TM, Cole SL, Cavender JF, Tevethia MJ . Regions and activities of simian virus 40 T antigen that cooperate with an activated ras oncogene in transforming primary rat embryo fibroblasts. J Virol 2002; 76: 3145–3157.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Chao HH, Buchmann AM, DeCaprio JA . Loss of p19(ARF) eliminates the requirement for the pRB-binding motif in simian virus 40 large T antigen-mediated transformation. Mol Cell Biol 2000; 20: 7624–7633.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Dameron KM, Volpert OV, Tainsky MA, Bouck N . Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 1994; 265: 1582–1584.

    CAS  PubMed  Google Scholar 

  91. Bagchi S, Weinmann R, Raychaudhuri P . The retinoblastoma protein copurifies with E2F-I, an E1A-regulated inhibitor of the transcription factor E2F. Cell 1991; 65: 1063–1072.

    CAS  PubMed  Google Scholar 

  92. Chellappan SP, Hiebert S, Mudryj M, Horowitz JM, Nevins JR . The E2F transcription factor is a cellular target for the RB protein. Cell 1991; 65: 1053–1061.

    CAS  PubMed  Google Scholar 

  93. Chittenden T, Livingston DM, Kaelin WG Jr . The T/E1A-binding domain of the retinoblastoma product can interact selectively with a sequence-specific DNA-binding protein. Cell 1991; 65: 1073–1082.

    CAS  PubMed  Google Scholar 

  94. Naito T, Masaki T, Nikolic-Paterson DJ, Tanji C, Yorioka N, Kohno N . Angiotensin II induces thrombospondin-1 production in human mesangial cells via p38 MAPK and JNK: a mechanism for activation of latent TGF-beta1. Am J Physiol Renal Physiol 2004; 286: F278–F287.

    CAS  PubMed  Google Scholar 

  95. Land H, Parada LF, Weinberg RA . Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 1983; 304: 596–602.

    CAS  PubMed  Google Scholar 

  96. Li Z, Wang C, Jiao X, Lu Y, Fu M, Quong AA et al. Cyclin D1 regulates cellular migration through the inhibition of thrombospondin 1 and ROCK signaling. Mol Cell Biol 2006; 26: 4240–4256.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Sauzeau V, Berenjeno IM, Citterio C, Bustelo XR . A transcriptional cross-talk between RhoA and c-Myc inhibits the RhoA/Rock-dependent cytoskeleton. Oncogene 2010; 29: 3781–3792.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Liu S, Goldstein RH, Scepansky EM, Rosenblatt M . Inhibition of rho-associated kinase signaling prevents breast cancer metastasis to human bone. Cancer Res 2009; 69: 8742–8751.

    CAS  PubMed  Google Scholar 

  99. Mizukami Y, Fujiki K, Duerr EM, Gala M, Jo WS, Zhang X et al. Hypoxic regulation of vascular endothelial growth factor through the induction of phosphatidylinositol 3-kinase/Rho/ROCK and c-Myc. J Biol Chem 2006; 281: 13957–13963.

    CAS  PubMed  Google Scholar 

  100. Chin L, Tam A, Pomerantz J, Wong M, Holash J, Bardeesy N et al. Essential role for oncogenic Ras in tumour maintenance. Nature 1999; 400: 468–472.

    CAS  PubMed  Google Scholar 

  101. Guo N, Krutzsch HC, Inman JK, Roberts DD . Thrombospondin 1 and type I repeat peptides of thrombospondin 1 specifically induce apoptosis of endothelial cells. Cancer Res 1997; 57: 1735–1742.

    CAS  PubMed  Google Scholar 

  102. Wen S, Stolarov J, Myers MP, Su JD, Wigler MH, Tonks NK et al. PTEN controls tumor-induced angiogenesis. Proc Natl Acad Sci USA 2001; 98: 4622–4627.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Heighway J, Betticher DC, Hoban PR, Altermatt HJ, Cowen R . Coamplification in tumors of KRAS2, type 2 inositol 1,4,5 triphosphate receptor gene, and a novel human gene, KRAG. Genomics 1996; 35: 207–214.

    CAS  PubMed  Google Scholar 

  104. Janocko LE, Lucke JF, Groft DW, Brown KA, Smith CA, Pollice AA et al. Assessing sequential oncogene amplification in human breast cancer. Cytometry 1995; 21: 18–22.

    CAS  PubMed  Google Scholar 

  105. Galiana C, Lozano JC, Bancel B, Nakazawa H, Yamasaki H . High frequency of Ki-ras amplification and p53 gene mutations in adenocarcinomas of the human esophagus. Mol Carcinog 1995; 14: 286–293.

    CAS  PubMed  Google Scholar 

  106. Nagy A, Kozma L, Kiss I, Ember I, Takacs I, Hajdu J et al. Copy number of cancer genes predict tumor grade and survival of pancreatic cancer patients. Anticancer Res 2001; 21: 1321–1325.

    CAS  PubMed  Google Scholar 

  107. Varticovski L, Daley GQ, Jackson P, Baltimore D, Cantley LC . Activation of phosphatidylinositol 3-kinase in cells expressing abl oncogene variants. Mol Cell Biol 1991; 11: 1107–1113.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Wu X, Senechal K, Neshat MS, Whang YE, Sawyers CL . The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc Natl Acad Sci USA 1998; 95: 15587–15591.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Sepp-Lorenzino L, Rosen N, Lebwohl DE . Insulin and insulin-like growth factor signaling are defective in the MDA MB-468 human breast cancer cell line. Cell Growth Differ 1994; 5: 1077–1083.

    CAS  PubMed  Google Scholar 

  110. Lebwohl DE, Muise-Helmericks R, Sepp-Lorenzino L, Serve S, Timaul M, Bol R et al. A truncated cyclin D1 gene encodes a stable mRNA in a human breast cancer cell line. Oncogene 1994; 9: 1925–1929.

    CAS  PubMed  Google Scholar 

  111. Weng LP, Smith WM, Dahia PL, Ziebold U, Gil E, Lees JA et al. PTEN suppresses breast cancer cell growth by phosphatase activity-dependent G1 arrest followed by cell death. Cancer Res 1999; 59: 5808–5814.

    CAS  PubMed  Google Scholar 

  112. Perren A, Weng LP, Boag AH, Ziebold U, Thakore K, Dahia PL et al. Immunohistochemical evidence of loss of PTEN expression in primary ductal adenocarcinomas of the breast. Am J Pathol 1999; 155: 1253–1260.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Dahia PL, Aguiar RC, Alberta J, Kum JB, Caron S, Sill H et al. PTEN is inversely correlated with the cell survival factor Akt/PKB and is inactivated via multiple mechanismsin haematological malignancies. Hum Mol Genet 1999; 8: 185–193.

    CAS  PubMed  Google Scholar 

  114. Escot C, Theillet C, Lidereau R, Spyratos F, Champeme MH, Gest J et al. Genetic alteration of the c-myc protooncogene (MYC) in human primary breast carcinomas. Proc Natl Acad Sci USA 1986; 83: 4834–4838.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Nau MM, Carney DN, Battey J, Johnson B, Little C, Gazdar A et al. Amplification, expression and rearrangement of c-myc and N-myc oncogenes in human lung cancer. Curr Top Microbiol Immunol 1984; 113: 172–177.

    CAS  PubMed  Google Scholar 

  116. Clark EA, Golub TR, Lander ES, Hynes RO . Genomic analysis of metastasis reveals an essential role for RhoC. Nature 2000; 406: 532–535.

    CAS  PubMed  Google Scholar 

  117. Helin K, Wu CL, Fattaey AR, Lees JA, Dynlacht BD, Ngwu C et al. Heterodimerization of the transcription factors E2F-1 and DP-1 leads to cooperative trans-activation. Genes Dev 1993; 7: 1850–1861.

    CAS  PubMed  Google Scholar 

  118. Brummelkamp TR, Bernards R, Agami R . A system for stable expression of short interfering RNAs in mammalian cells. Science 2002; 296: 550–553.

    CAS  PubMed  Google Scholar 

  119. Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 2003; 33: 401–406.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Richard O Hynes, Dr Alan Hall, Dr Michael Detmar, Dr Yoshiyuki Kuchino and Dr James DiCaprio for reagents. We would like to thank Drs Ittai Ben-Porath, Scott Dessain, Lisa Spirio, Sendurai Mani and Sheila Stewart for useful discussions. This work was supported by NIH/NCI grant 5 R01CA78461 and Merck/MIT to RAW. We also thank the Damon Runyon Cancer Research Foundation for post-doctoral support to RSW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R A Weinberg.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watnick, R., Rodriguez, R., Wang, S. et al. Thrombospondin-1 repression is mediated via distinct mechanisms in fibroblasts and epithelial cells. Oncogene 34, 2823–2835 (2015). https://doi.org/10.1038/onc.2014.228

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.228

This article is cited by

Search

Quick links