Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

PAX genes in childhood oncogenesis: developmental biology gone awry?

Abstract

Childhood solid tumors often arise from embryonal-like cells, which are distinct from the epithelial cancers observed in adults, and etiologically can be considered as ‘developmental patterning gone awry’. Paired-box (PAX) genes encode a family of evolutionarily conserved transcription factors that are important regulators of cell lineage specification, migration and tissue patterning. PAX loss-of-function mutations are well known to cause potent developmental phenotypes in animal models and underlie genetic disease in humans, whereas dysregulation and/or genetic modification of PAX genes have been shown to function as critical triggers for human tumorigenesis. Consequently, exploring PAX-related pathobiology generates insights into both normal developmental biology and key molecular mechanisms that underlie pediatric cancer, which are the topics of this review.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Li CG, Eccles MR . PAX genes in cancer; friends or foes? Front Genet 2012; 3: 6.

    PubMed  PubMed Central  Google Scholar 

  2. Lang D, Powell SK, Plummer RS, Young KP, Ruggeri BA . PAX genes: roles in development, pathophysiology, and cancer. Biochem Pharmacol 2007; 73: 1–14.

    CAS  PubMed  Google Scholar 

  3. Robson EJ, He SJ, Eccles MR . A PANorama of PAX genes in cancer and development. Nat Rev Cancer 2006; 6: 52–62.

    CAS  PubMed  Google Scholar 

  4. Dahl E, Koseki H, Balling R . Pax genes and organogenesis. Bioessays 1997; 19: 755–765.

    CAS  PubMed  Google Scholar 

  5. Epstein J, Cai J, Glaser T, Jepeal L, Maas R . Identification of a Pax paired domain recognition sequence and evidence for DNA-dependent conformational changes. J Biol Chem 1994; 269: 8355–8361.

    CAS  PubMed  Google Scholar 

  6. Epstein JA, Lam P, Jepeal L, Maas RL, Shapiro DN . Pax3 inhibits myogenic differentiation of cultured myoblast cells. J Biol Chem 1995; 270: 11719–11722.

    CAS  PubMed  Google Scholar 

  7. Apuzzo S, Gros P . Cooperative interactions between the two DNA binding domains of Pax3: helix 2 of the paired domain is in the proximity of the amino terminus of the homeodomain. Biochemistry 2007; 46: 2984–2993.

    CAS  PubMed  Google Scholar 

  8. Wilson D, Sheng G, Lecuit T, Dostatni N, Desplan C . Cooperative dimerization of paired class homeo domains on DNA. Genes Dev 1993; 7: 2120–2134.

    CAS  PubMed  Google Scholar 

  9. Jun S, Desplan C . Cooperative interactions between paired domain and homeodomain. Development 1996; 122: 2639–2650.

    CAS  PubMed  Google Scholar 

  10. Mailhos C, Andre S, Mollereau B, Goriely A, Hemmati-Brivanlou A, Desplan C . Drosophila Goosecoid requires a conserved heptapeptide for repression of paired-class homeoprotein activators. Development 1998; 125: 937–947.

    CAS  PubMed  Google Scholar 

  11. Epstein DJ, Vekemans M, Gros P . Splotch (Sp2H), a mutation affecting development of the mouse neural tube, shows a deletion within the paired homeodomain of Pax-3. Cell 1991; 67: 767–774.

    CAS  PubMed  Google Scholar 

  12. Goulding MD, Chalepakis G, Deutsch U, Erselius JR, Gruss P . Pax-3, a novel murine DNA binding protein expressed during early neurogenesis. EMBO J 1991; 10: 1135–1147.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Goulding M, Lumsden A, Paquette AJ . Regulation of Pax-3 expression in the dermomyotome and its role in muscle development. Development 1994; 120: 957–971.

    CAS  PubMed  Google Scholar 

  14. Bober E, Franz T, Arnold HH, Gruss P, Tremblay P . Pax-3 is required for the development of limb muscles: a possible role for the migration of dermomyotomal muscle progenitor cells. Development 1994; 120: 603–612.

    CAS  PubMed  Google Scholar 

  15. Tassabehji M, Read AP, Newton VE, Harris R, Balling R, Gruss P et al. Waardenburg's syndrome patients have mutations in the human homologue of the Pax-3 paired box gene. Nature 1992; 355: 635–636.

    CAS  PubMed  Google Scholar 

  16. Kassar-Duchossoy L, Giacone E, Gayraud-Morel B, Jory A, Gomes D, Tajbakhsh S . Pax3/Pax7 mark a novel population of primitive myogenic cells during development. Genes Dev 2005; 19: 1426–1431.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA . Pax7 is required for the specification of myogenic satellite cells. Cell 2000; 102: 777–786.

    CAS  PubMed  Google Scholar 

  18. Oustanina S, Hause G, Braun T . Pax7 directs postnatal renewal and propagation of myogenic satellite cells but not their specification. EMBO J 2004; 23: 3430–3439.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Relaix F, Montarras D, Zaffran S, Gayraud-Morel B, Rocancourt D, Tajbakhsh S et al. Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J Cell Biol 2006; 172: 91–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. von Maltzahn J, Jones AE, Parks RJ, Rudnicki MA . Pax7 is critical for the normal function of satellite cells in adult skeletal muscle. Proc Natl Acad Sci USA 2013; 110: 16474–16479.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lepper C, Conway SJ, Fan CM . Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements. Nature 2009; 460: 627–631.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gurney J, Young J, Roffers S, Smith M, Bunin G . Cancer indicences and survival among children and adolescents: United States SEER Program 1975–1995. In: Ries L (ed.) National Cancer Institute, SEER Program. NIH: Bethesda, MD, USA, 1999, pp 111–124.

    Google Scholar 

  23. Ognjanovic S, Linabery AM, Charbonneau B, Ross JA . Trends in childhood rhabdomyosarcoma incidence and survival in the United States, 1975–2005. Cancer 2009; 115: 4218–4226.

    PubMed  Google Scholar 

  24. Meza JL, Anderson J, Pappo AS, Meyer WH, Children's Oncology Group, Analysis of prognostic factors in patients with nonmetastatic rhabdomyosarcoma treated on intergroup rhabdomyosarcoma studies III and IV: the Children's Oncology Group. J Clin Oncol 2006; 24: 3844–3851.

    PubMed  Google Scholar 

  25. Huh WW, Skapek SX . Childhood rhabdomyosarcoma: new insight on biology and treatment. Curr Oncol Rep 2010; 12: 402–410.

    PubMed  Google Scholar 

  26. Tiffin N, Williams RD, Shipley J, Pritchard-Jones K . PAX7 expression in embryonal rhabdomyosarcoma suggests an origin in muscle satellite cells. Br J Cancer 2003; 89: 327–332.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Barr FG, Fitzgerald JC, Ginsberg JP, Vanella ML, Davis RJ, Bennicelli JL . Predominant expression of alternative PAX3 and PAX7 forms in myogenic and neural tumor cell lines. Cancer Res 1999; 59: 5443–5448.

    CAS  PubMed  Google Scholar 

  28. Bernasconi M, Remppis A, Fredericks WJ, Rauscher FJ 3rd, Schafer BW . Induction of apoptosis in rhabdomyosarcoma cells through down-regulation of PAX proteins. Proc Natl Acad Sci USA 1996; 93: 13164–13169.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Davis RJ, D'Cruz CM, Lovell MA, Biegel JA, Barr FG . Fusion of PAX7 to FKHR by the variant t(1;13)(p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res 1994; 54: 2869–2872.

    CAS  PubMed  Google Scholar 

  30. Sorensen PH, Lynch JC, Qualman SJ, Tirabosco R, Lim JF, Maurer HM et al. PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children's oncology group. J Clin Oncol 2002; 20: 2672–2679.

    CAS  PubMed  Google Scholar 

  31. Kelly KM, Womer RB, Sorensen PH, Xiong QB, Barr FG . Common and variant gene fusions predict distinct clinical phenotypes in rhabdomyosarcoma. J Clin Oncol 1997; 15: 1831–1836.

    CAS  PubMed  Google Scholar 

  32. Williamson D, Missiaglia E, de Reynies A, Pierron G, Thuille B, Palenzuela G et al. Fusion gene-negative alveolar rhabdomyosarcoma is clinically and molecularly indistinguishable from embryonal rhabdomyosarcoma. J Clin Oncol 2010; 28: 2151–2158.

    PubMed  Google Scholar 

  33. Cao L, Yu Y, Bilke S, Walker RL, Mayeenuddin LH, Azorsa DO et al. Genome-wide identification of PAX3-FKHR binding sites in rhabdomyosarcoma reveals candidate target genes important for development and cancer. Cancer Res 2010; 70: 6497–6508.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wachtel M, Dettling M, Koscielniak E, Stegmaier S, Treuner J, Simon-Klingenstein K et al. Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1. Cancer Res 2004; 64: 5539–5545.

    CAS  PubMed  Google Scholar 

  35. Shern JF, Chen L, Chmielecki J, Wei JS, Patidar R, Rosenberg M et al. Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors. Cancer Discov 2014; 4: 216–231.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Galindo RL, Allport JA, Olson EN . A Drosophila model of the rhabdomyosarcoma initiator PAX7-FKHR. Proc Natl Acad Sci USA 2006; 103: 13439–13444.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Avirneni-Vadlamudi U, Galindo KA, Endicott TR, Paulson V, Cameron S, Galindo RL . Drosophila and mammalian models uncover a role for the myoblast fusion gene TANC1 in rhabdomyosarcoma. J Clin Invest 2012; 122: 403–407.

    CAS  PubMed  Google Scholar 

  38. Ren YX, Finckenstein FG, Abdueva DA, Shahbazian V, Chung B, Weinberg KI et al. Mouse mesenchymal stem cells expressing PAX-FKHR form alveolar rhabdomyosarcomas by cooperating with secondary mutations. Cancer Res 2008; 68: 6587–6597.

    CAS  PubMed  Google Scholar 

  39. Naini S, Etheridge KT, Adam SJ, Qualman SJ, Bentley RC, Counter CM et al. Defining the cooperative genetic changes that temporally drive alveolar rhabdomyosarcoma. Cancer Res 2008; 68: 9583–9588.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Keller C, Arenkiel BR, Coffin CM, El-Bardeesy N, DePinho RA, Capecchi MR . Alveolar rhabdomyosarcomas in conditional Pax3:Fkhr mice: cooperativity of Ink4a/ARF and Trp53 loss of function. Genes Dev 2004; 18: 2614–2626.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen X, Stewart E, Shelat AA, Qu C, Bahrami A, Hatley M et al. Targeting oxidative stress in embryonal rhabdomyosarcoma. Cancer Cell 2013; 24: 710–724.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mansouri A, Chowdhury K, Gruss P . Follicular cells of the thyroid gland require Pax8 gene function. Nat Genet 1998; 19: 87–90.

    CAS  PubMed  Google Scholar 

  43. Dressler GR, Deutsch U, Chowdhury K, Nornes HO, Gruss P . Pax2, a new murine paired-box-containing gene and its expression in the developing excretory system. Development 1990; 109: 787–795.

    CAS  PubMed  Google Scholar 

  44. Plachov D, Chowdhury K, Walther C, Simon D, Guenet JL, Gruss P . Pax8, a murine paired box gene expressed in the developing excretory system and thyroid gland. Development 1990; 110: 643–651.

    CAS  PubMed  Google Scholar 

  45. Dressler GR, Douglass EC . Pax-2 is a DNA-binding protein expressed in embryonic kidney and Wilms tumor. Proc Natl Acad Sci USA 1992; 89: 1179–1183.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sanyanusin P, Schimmenti LA, McNoe LA, Ward TA, Pierpont ME, Sullivan MJ et al. Mutation of the PAX2 gene in a family with optic nerve colobomas, renal anomalies and vesicoureteral reflux. Nat Genet 1995; 9: 358–364.

    CAS  PubMed  Google Scholar 

  47. Eccles MR, Wallis LJ, Fidler AE, Spurr NK, Goodfellow PJ, Reeve AE . Expression of the PAX2 gene in human fetal kidney and Wilms' tumor. Cell Growth Differ 1992; 3: 279–289.

    CAS  PubMed  Google Scholar 

  48. Torres M, Gomez-Pardo E, Dressler GR, Gruss P . Pax-2 controls multiple steps of urogenital development. Development 1995; 121: 4057–4065.

    CAS  PubMed  Google Scholar 

  49. Winyard PJ, Risdon RA, Sams VR, Dressler GR, Woolf AS . The PAX2 tanscription factor is expressed in cystic and hyperproliferative dysplastic epithelia in human kidney malformations. J Clin Invest 1996; 98: 451–459.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Poleev A, Fickenscher H, Mundlos S, Winterpacht A, Zabel B, Fidler A et al. PAX8, a human paired box gene: isolation and expression in developing thyroid, kidney and Wilms' tumors. Development 1992; 116: 611–623.

    CAS  PubMed  Google Scholar 

  51. Narlis M, Grote D, Gaitan Y, Boualia SK, Bouchard M . Pax2 and pax8 regulate branching morphogenesis and nephron differentiation in the developing kidney. J Am Soc Nephrol 2007; 18: 1121–1129.

    CAS  PubMed  Google Scholar 

  52. Gnarra JR, Dressler GR . Expression of Pax-2 in human renal cell carcinoma and growth inhibition by antisense oligonucleotides. Cancer Res 1995; 55: 4092–4098.

    CAS  PubMed  Google Scholar 

  53. Muratovska A, Zhou C, He S, Goodyer P, Eccles MR . Paired-Box genes are frequently expressed in cancer and often required for cancer cell survival. Oncogene 2003; 22: 7989–7997.

    PubMed  Google Scholar 

  54. Fonsato V, Buttiglieri S, Deregibus MC, Puntorieri V, Bussolati B, Camussi G . Expression of Pax2 in human renal tumor-derived endothelial cells sustains apoptosis resistance and angiogenesis. Am J Pathol 2006; 168: 706–713.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Park D, Jia H, Rajakumar V, Chamberlin HM . Pax2/5/8 proteins promote cell survival in C. elegans. Development 2006; 133: 4193–4202.

    CAS  PubMed  Google Scholar 

  56. Li CG, Nyman JE, Braithwaite AW, Eccles MR . PAX8 promotes tumor cell growth by transcriptionally regulating E2F1 and stabilizing RB protein. Oncogene 2011; 30: 4824–4834.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Fernandez C, Geller J, Ehrlich P, Hill A, Kalapurakai J, Grundy P et al. Renal tumors. In: Pizzo P, Poplack D (eds) Principles and Practice of Pediatric Oncology, 6th edn, Lippincott WIlliams & Wilkins: Philadelphia, PA, USA, 2011, pp 861–885.

    Google Scholar 

  58. Ali AN, Diaz R, Shu HK, Paulino AC, Esiashvili N . A Surveillance, Epidemiology and End Results (SEER) program comparison of adult and pediatric Wilms' tumor. Cancer 2012; 118: 2541–2551.

    PubMed  Google Scholar 

  59. Silberstein J, Grabowski J, Saltzstein SL, Kane CJ . Renal cell carcinoma in the pediatric population: Results from the California Cancer Registry. Pediatr Blood Cancer 2009; 52: 237–241.

    PubMed  Google Scholar 

  60. Dressler GR, Wilkinson JE, Rothenpieler UW, Patterson LT, Williams-Simons L, Westphal H . Deregulation of Pax-2 expression in transgenic mice generates severe kidney abnormalities. Nature 1993; 362: 65–67.

    CAS  PubMed  Google Scholar 

  61. Ryan G, Steele-Perkins V, Morris JF, Rauscher FJ 3rd, Dressler GR . Repression of Pax-2 by WT1 during normal kidney development. Development 1995; 121: 867–875.

    CAS  PubMed  Google Scholar 

  62. Discenza MT, He S, Lee TH, Chu LL, Bolon B, Goodyer P et al. WT1 is a modifier of the Pax2 mutant phenotype: cooperation and interaction between WT1 and Pax2. Oncogene 2003; 22: 8145–8155.

    CAS  PubMed  Google Scholar 

  63. Zhai QJ, Ozcan A, Hamilton C, Shen SS, Coffey D, Krishnan B et al. PAX-2 expression in non-neoplastic, primary neoplastic, and metastatic neoplastic tissue: a comprehensive immunohistochemical study. Appl Immunohistochem Mol Morphol 2010; 18: 323–332.

    CAS  PubMed  Google Scholar 

  64. Ozcan A, de la Roza G, Ro JY, Shen SS, Truong LD . PAX2 and PAX8 expression in primary and metastatic renal tumors: a comprehensive comparison. Arch Pathol Lab Med 2012; 136: 1541–1551.

    CAS  PubMed  Google Scholar 

  65. Puglisi F, Cesselli D, Damante G, Pellizzari L, Beltrami CA, Di Loreto C . Expression of Pax-8, p53 and bcl-2 in human benign and malignant thyroid diseases. Anticancer Res 2000; 20: 311–316.

    CAS  PubMed  Google Scholar 

  66. Scouten WT, Patel A, Terrell R, Burch HB, Bernet VJ, Tuttle RM et al. Cytoplasmic localization of the paired box gene, Pax-8, is found in pediatric thyroid cancer and may be associated with a greater risk of recurrence. Thyroid 2004; 14: 1037–1046.

    CAS  PubMed  Google Scholar 

  67. Holmes L Jr., Hossain J, Opara F . Pediatric thyroid carcinoma incidence and temporal trends in the USA (1973-2007): race or shifting diagnostic paradigm? ISRN Oncol 2012; 2012: 906197.

    PubMed  PubMed Central  Google Scholar 

  68. Enomoto K, Enomoto Y, Uchino S, Yamashita H, Noguchi S . Follicular thyroid cancer in children and adolescents: clinicopathologic features, long-term survival, and risk factors for recurrence. Endocr J 2013; 60: 629–635.

    PubMed  Google Scholar 

  69. Hogan AR, Zhuge Y, Perez EA, Koniaris LG, Lew JI, Sola JE . Pediatric thyroid carcinoma: incidence and outcomes in 1753 patients. J Surg Res 2009; 156: 167–172.

    PubMed  Google Scholar 

  70. Kroll TG, Sarraf P, Pecciarini L, Chen CJ, Mueller E, Spiegelman BM et al. PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma [corrected]. Science 2000; 289: 1357–1360.

    CAS  PubMed  Google Scholar 

  71. Marques AR, Espadinha C, Catarino AL, Moniz S, Pereira T, Sobrinho LG et al. Expression of PAX8-PPAR gamma 1 rearrangements in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab 2002; 87: 3947–3952.

    CAS  PubMed  Google Scholar 

  72. Nikiforova MN, Biddinger PW, Caudill CM, Kroll TG, Nikiforov YE . PAX8-PPARgamma rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am J Surg Pathol 2002; 26: 1016–1023.

    PubMed  Google Scholar 

  73. Cheung L, Messina M, Gill A, Clarkson A, Learoyd D, Delbridge L et al. Detection of the PAX8-PPAR gamma fusion oncogene in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab 2003; 88: 354–357.

    CAS  PubMed  Google Scholar 

  74. Castro P, Rebocho AP, Soares RJ, Magalhaes J, Roque L, Trovisco V et al. PAX8-PPARgamma rearrangement is frequently detected in the follicular variant of papillary thyroid carcinoma. J Clin Endocrinol Metab 2006; 91: 213–220.

    CAS  PubMed  Google Scholar 

  75. Lacroix L, Mian C, Barrier T, Talbot M, Caillou B, Schlumberger M et al. PAX8 and peroxisome proliferator-activated receptor gamma 1 gene expression status in benign and malignant thyroid tissues. Eu J Endocrinol 2004; 151: 367–374.

    CAS  Google Scholar 

  76. Gregory Powell J, Wang X, Allard BL, Sahin M, Wang XL, Hay ID et al. The PAX8/PPARgamma fusion oncoprotein transforms immortalized human thyrocytes through a mechanism probably involving wild-type PPARgamma inhibition. Oncogene 2004; 23: 3634–3641.

    CAS  PubMed  Google Scholar 

  77. Ordonez NG . Value of PAX 8 immunostaining in tumor diagnosis: a review and update. Adv Anat Pathol 2012; 19: 140–151.

    CAS  PubMed  Google Scholar 

  78. Nonaka D, Tang Y, Chiriboga L, Rivera M, Ghossein R . Diagnostic utility of thyroid transcription factors Pax8 and TTF-2 (FoxE1) in thyroid epithelial neoplasms. Mod Pathol 2008; 21: 192–200.

    CAS  PubMed  Google Scholar 

  79. Ozcan A, Shen SS, Hamilton C, Anjana K, Coffey D, Krishnan B et al. PAX 8 expression in non-neoplastic tissues, primary tumors, and metastatic tumors: a comprehensive immunohistochemical study. Mod Pathol 2011; 24: 751–764.

    CAS  PubMed  Google Scholar 

  80. Laury AR, Perets R, Piao H, Krane JF, Barletta JA, French C et al. A comprehensive analysis of PAX8 expression in human epithelial tumors. Am J Surg Pathol 2011; 35: 816–826.

    PubMed  Google Scholar 

  81. Bishop JA, Sharma R, Westra WH . PAX8 immunostaining of anaplastic thyroid carcinoma: a reliable means of discerning thyroid origin for undifferentiated tumors of the head and neck. Hum Pathol 2011; 42: 1873–1877.

    CAS  PubMed  Google Scholar 

  82. Hunger SP, Lu X, Devidas M, Camitta BM, Gaynon PS, Winick NJ et al. Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the children's oncology group. J Clin Oncol 2012; 30: 1663–1669.

    PubMed  PubMed Central  Google Scholar 

  83. Holmes ML, Pridans C, Nutt SL . The regulation of the B-cell gene expression programme by Pax5. Immunol Cell Biol 2008; 86: 47–53.

    CAS  PubMed  Google Scholar 

  84. Nutt SL, Heavey B, Rolink AG, Busslinger M . Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 1999; 401: 556–562.

    CAS  PubMed  Google Scholar 

  85. Familiades J, Bousquet M, Lafage-Pochitaloff M, Bene MC, Beldjord K, De Vos J et al. PAX5 mutations occur frequently in adult B-cell progenitor acute lymphoblastic leukemia and PAX5 haploinsufficiency is associated with BCR-ABL1 and TCF3-PBX1 fusion genes: a GRAALL study. Leukemia 2009; 23: 1989–1998.

    CAS  PubMed  Google Scholar 

  86. Cobaleda C, Schebesta A, Delogu A, Busslinger M . Pax5: the guardian of B cell identity and function. Nat Immunol 2007; 8: 463–470.

    CAS  PubMed  Google Scholar 

  87. O'Brien P, Morin P Jr, Ouellette RJ, Robichaud GA . The Pax-5 gene: a pluripotent regulator of B-cell differentiation and cancer disease. Cancer Res 2011; 71: 7345–7350.

    CAS  PubMed  Google Scholar 

  88. Coyaud E, Struski S, Prade N, Familiades J, Eichner R, Quelen C et al. Wide diversity of PAX5 alterations in B-ALL: a Groupe Francophone de Cytogenetique Hematologique study. Blood 2010; 115: 3089–3097.

    CAS  PubMed  Google Scholar 

  89. Shah S, Schrader KA, Waanders E, Timms AE, Vijai J, Miething C et al. A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia. Nat Genet 2013; 45: 1226–1231.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007; 446: 758–764.

    CAS  PubMed  Google Scholar 

  91. Cazzaniga G, Daniotti M, Tosi S, Giudici G, Aloisi A, Pogliani E et al. The paired box domain gene PAX5 is fused to ETV6/TEL in an acute lymphoblastic leukemia case. Cancer Res 2001; 61: 4666–4670.

    CAS  PubMed  Google Scholar 

  92. Bousquet M, Broccardo C, Quelen C, Meggetto F, Kuhlein E, Delsol G et al. A novel PAX5-ELN fusion protein identified in B-cell acute lymphoblastic leukemia acts as a dominant negative on wild-type PAX5. Blood 2007; 109: 3417–3423.

    CAS  PubMed  Google Scholar 

  93. Denk D, Nebral K, Bradtke J, Pass G, Moricke A, Attarbaschi A et al. PAX5-AUTS2: a recurrent fusion gene in childhood B-cell precursor acute lymphoblastic leukemia. Leuk Res 2012; 36: e178–e181.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Strehl S, Konig M, Dworzak MN, Kalwak K, Haas OA . PAX5/ETV6 fusion defines cytogenetic entity dic(9;12)(p13;p13). Leukemia 2003; 17: 1121–1123.

    CAS  PubMed  Google Scholar 

  95. Kawamata N, Pennella MA, Woo JL, Berk AJ, Koeffler HP . Dominant-negative mechanism of leukemogenic PAX5 fusions. Oncogene 2012; 31: 966–977.

    CAS  PubMed  Google Scholar 

  96. Nebral K, Konig M, Harder L, Siebert R, Haas OA, Strehl S . Identification of PML as novel PAX5 fusion partner in childhood acute lymphoblastic leukaemia. Br J Haematol 2007; 139: 269–274.

    CAS  PubMed  Google Scholar 

  97. Nebral K, Denk D, Attarbaschi A, Konig M, Mann G, Haas OA et al. Incidence and diversity of PAX5 fusion genes in childhood acute lymphoblastic leukemia. Leukemia 2009; 23: 134–143.

    CAS  PubMed  Google Scholar 

  98. Ofverholm I, Tran AN, Heyman M, Zachariadis V, Nordenskjold M, Nordgren A et al. Impact of IKZF1 deletions and PAX5 amplifications in pediatric B-cell precursor ALL treated according to NOPHO protocols. Leukemia 2013; 27: 1936–1939.

    CAS  PubMed  Google Scholar 

  99. Walter K, Cockerill PN, Barlow R, Clarke D, Hoogenkamp M, Follows GA et al. Aberrant expression of CD19 in AML with t(8;21) involves a poised chromatin structure and PAX5. Oncogene 2010; 29: 2927–2937.

    CAS  PubMed  Google Scholar 

  100. Busslinger M, Klix N, Pfeffer P, Graninger PG, Kozmik Z . Deregulation of PAX-5 by translocation of the Emu enhancer of the IgH locus adjacent to two alternative PAX-5 promoters in a diffuse large-cell lymphoma. Proc Natl Acad Sci USA 1996; 93: 6129–6134.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Iida S, Rao PH, Nallasivam P, Hibshoosh H, Butler M, Louie DC et al. The t(9;14)(p13;q32) chromosomal translocation associated with lymphoplasmacytoid lymphoma involves the PAX-5 gene. Blood 1996; 88: 4110–4117.

    CAS  PubMed  Google Scholar 

  102. Poppe B, De Paepe P, Michaux L, Dastugue N, Bastard C, Herens C et al. PAX5/IGH rearrangement is a recurrent finding in a subset of aggressive B-NHL with complex chromosomal rearrangements. Genes Chromosomes Cancer 2005; 44: 218–223.

    CAS  PubMed  Google Scholar 

  103. Souabni A, Jochum W, Busslinger M . Oncogenic role of Pax5 in the T-lymphoid lineage upon ectopic expression from the immunoglobulin heavy-chain locus. Blood 2007; 109: 281–289.

    CAS  PubMed  Google Scholar 

  104. Cobaleda C, Jochum W, Busslinger M . Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors. Nature 2007; 449: 473–477.

    CAS  PubMed  Google Scholar 

  105. Desouki MM, Post GR, Cherry D, Lazarchick J . PAX-5: a valuable immunohistochemical marker in the differential diagnosis of lymphoid neoplasms. Clin Med Res 2010; 8: 84–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Kozmik Z, Sure U, Ruedi D, Busslinger M, Aguzzi A . Deregulated expression of PAX5 in medulloblastoma. Proc Natl Acad Sci USA 1995; 92: 5709–5713.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Baumann Kubetzko FB, Di Paolo C, Maag C, Meier R, Schafer BW, Betts DR et al. The PAX5 oncogene is expressed in N-type neuroblastoma cells and increases tumorigenicity of a S-type cell line. Carcinogenesis 2004; 25: 1839–1846.

    CAS  PubMed  Google Scholar 

  108. Eberhard D, Busslinger M . The partial homeodomain of the transcription factor Pax-5 (BSAP) is an interaction motif for the retinoblastoma and TATA-binding proteins. Cancer Res 1999; 59 (7 Suppl): 1716s–1724s discussion 24s-25s.

    CAS  PubMed  Google Scholar 

  109. Dohrmann C, Gruss P, Lemaire L . Pax genes and the differentiation of hormone-producing endocrine cells in the pancreas. Mech Dev 2000; 92: 47–54.

    CAS  PubMed  Google Scholar 

  110. Gehring WJ . The master control gene for morphogenesis and evolution of the eye. Genes Cells 1996; 1: 11–15.

    CAS  PubMed  Google Scholar 

  111. Carbe C, Garg A, Cai Z, Li H, Powers A, Zhang X . An allelic series at the paired box gene 6 (Pax6) locus reveals the functional specificity of Pax genes. J Biol Chem 2013; 288: 12130–12141.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Walther C, Gruss P . Pax-6, a murine paired box gene, is expressed in the developing CNS. Development 1991; 113: 1435–1449.

    CAS  PubMed  Google Scholar 

  113. Sosa-Pineda B . The gene Pax4 is an essential regulator of pancreatic beta-cell development. Mol Cells 2004; 18: 289–294.

    CAS  PubMed  Google Scholar 

  114. Brun T, Gauthier BR . A focus on the role of Pax4 in mature pancreatic islet beta-cell expansion and survival in health and disease. J Mol Endocrinol 2008; 40: 37–45.

    CAS  PubMed  Google Scholar 

  115. Smith SB, Ee HC, Conners JR, German MS . Paired-homeodomain transcription factor PAX4 acts as a transcriptional repressor in early pancreatic development. Mol Cell Biol 1999; 19: 8272–8280.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Sosa-Pineda B, Chowdhury K, Torres M, Oliver G, Gruss P . The Pax4 gene is essential for differentiation of insulin-producing beta cells in the mammalian pancreas. Nature 1997; 386: 399–402.

    CAS  PubMed  Google Scholar 

  117. Jo W, Endo M, Ishizu K, Nakamura A, Tajima T . A novel PAX4 mutation in a Japanese patient with maturity-onset diabetes of the young. Tohoku J Exp Med 2011; 223: 113–118.

    CAS  PubMed  Google Scholar 

  118. Shimajiri Y, Sanke T, Furuta H, Hanabusa T, Nakagawa T, Fujitani Y et al. A missense mutation of Pax4 gene (R121W) is associated with type 2 diabetes in Japanese. Diabetes 2001; 50: 2864–2869.

    CAS  PubMed  Google Scholar 

  119. Plengvidhya N, Kooptiwut S, Songtawee N, Doi A, Furuta H, Nishi M et al. PAX4 mutations in Thais with maturity onset diabetes of the young. J Clin Endocrinol Metab 2007; 92: 2821–2826.

    CAS  PubMed  Google Scholar 

  120. St-Onge L, Sosa-Pineda B, Chowdhury K, Mansouri A, Gruss P . Pax6 is required for differentiation of glucagon-producing alpha-cells in mouse pancreas. Nature 1997; 387: 406–409.

    CAS  PubMed  Google Scholar 

  121. Quiring R, Walldorf U, Kloter U, Gehring WJ . Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science 1994; 265: 785–789.

    CAS  PubMed  Google Scholar 

  122. Halder G, Callaerts P, Gehring WJ . Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 1995; 267: 1788–1792.

    CAS  PubMed  Google Scholar 

  123. Czerny T, Halder G, Kloter U, Souabni A, Gehring WJ, Busslinger M . twin of eyeless, a second Pax-6 gene of Drosophila, acts upstream of eyeless in the control of eye development. Mol Cell 1999; 3: 297–307.

    CAS  PubMed  Google Scholar 

  124. Hill RE, Favor J, Hogan BL, Ton CC, Saunders GF, Hanson IM et al. Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature 1991; 354: 522–525.

    CAS  PubMed  Google Scholar 

  125. Glaser T, Walton DS, Maas RL . Genomic structure, evolutionary conservation and aniridia mutations in the human PAX6 gene. Nat Genet 1992; 2: 232–239.

    CAS  PubMed  Google Scholar 

  126. Jordan T, Hanson I, Zaletayev D, Hodgson S, Prosser J, Seawright A et al. The human PAX6 gene is mutated in two patients with aniridia. Nat Genet 1992; 1: 328–332.

    CAS  PubMed  Google Scholar 

  127. Hurwitz R, Shields C, Shields J, Chévez-Barrios P, Gombos D, Hurwitz M et al. Retinoblastoma. In: Pizzo P, Poplack D (eds) Principles and Practice of Pediatric Oncology, 6th edn, Lippincott WIlliams & Wilkins: Philadelphia, PA, USA, 2011, pp 809–837.

    Google Scholar 

  128. Bai SW, Li B, Zhang H, Jonas JB, Zhao BW, Shen L et al. Pax6 regulates proliferation and apoptosis of human retinoblastoma cells. Invest Ophthalmol Vis Sci 2011; 52: 4560–4570.

    CAS  PubMed  Google Scholar 

  129. Li L, Li B, Zhang H, Bai S, Wang Y, Zhao B et al. Lentiviral vector-mediated PAX6 overexpression promotes growth and inhibits apoptosis of human retinoblastoma cells. Invest Ophthalmol Vis Sci 2011; 52: 8393–8400.

    CAS  PubMed  Google Scholar 

  130. Wang J, Wang X, Wu G, Hou D, Hu Q . MiR-365b-3p, down-regulated in retinoblastoma, regulates cell cycle progression and apoptosis of human retinoblastoma cells by targeting PAX6. FEBS Lett 2013; 587: 1779–1786.

    CAS  PubMed  Google Scholar 

  131. Su D, Ellis S, Napier A, Lee K, Manley NR . Hoxa3 and pax1 regulate epithelial cell death and proliferation during thymus and parathyroid organogenesis. Dev Biol 2001; 236: 316–329.

    CAS  PubMed  Google Scholar 

  132. Dietrich S, Gruss P . undulated phenotypes suggest a role of Pax-1 for the development of vertebral and extravertebral structures. Dev Biol 1995; 167: 529–548.

    CAS  PubMed  Google Scholar 

  133. Peters H, Neubuser A, Kratochwil K, Balling R . Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev 1998; 12: 2735–2747.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Wilm B, Dahl E, Peters H, Balling R, Imai K . Targeted disruption of Pax1 defines its null phenotype and proves haploinsufficiency. Proc Natl Acad Sci USA 1998; 95: 8692–8697.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Hol FA, Geurds MP, Chatkupt S, Shugart YY, Balling R, Schrander-Stumpel CT et al. PAX genes and human neural tube defects: an amino acid substitution in PAX1 in a patient with spina bifida. J Med Genet 1996; 33: 655–660.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Jumlongras D, Lin JY, Chapra A, Seidman CE, Seidman JG, Maas RL et al. A novel missense mutation in the paired domain of PAX9 causes non-syndromic oligodontia. Hum Genet 2004; 114: 242–249.

    CAS  PubMed  Google Scholar 

  137. Stockton DW, Das P, Goldenberg M, D'Souza RN, Patel PI . Mutation of PAX9 is associated with oligodontia. Nat Genet 2000; 24: 18–19.

    CAS  PubMed  Google Scholar 

  138. Frazier-Bowers SA, Scott MR, Cavender A, Mensah J, D'Souza RN . Mutational analysis of families affected with molar oligodontia. Connect Tissue Res 2002; 43: 296–300.

    CAS  PubMed  Google Scholar 

  139. Wang J, Jian F, Chen J, Wang H, Lin Y, Yang Z et al. Sequence analysis of PAX9, MSX1 and AXIN2 genes in a Chinese oligodontia family. Arch Oral Biol 2011; 56: 1027–1034.

    CAS  PubMed  Google Scholar 

  140. Peters H, Neubuser A, Balling R . Pax genes and organogenesis: Pax9 meets tooth development. Eur J Oral Sci 1998; 106 (Suppl 1): 38–43.

    CAS  PubMed  Google Scholar 

  141. Khan J, Wei JS, Ringner M, Saal LH, Ladanyi M, Westermann F et al. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 2001; 7: 673–679.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by funding to RLG by the Burroughs Wellcome Fund (Career Award for Medical Scientists), Alex's Lemonade Stand Foundation ("A" Award), American Cancer Society (Research Scholars Grant) and UTSW Department of Pathology (Research Grant). We thank Stephen X. Skapek for helpful suggestions regarding this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R L Galindo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahajan, P., Leavey, P. & Galindo, R. PAX genes in childhood oncogenesis: developmental biology gone awry?. Oncogene 34, 2681–2689 (2015). https://doi.org/10.1038/onc.2014.209

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.209

This article is cited by

Search

Quick links