Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TIPE1 induces apoptosis by negatively regulating Rac1 activation in hepatocellular carcinoma cells

Abstract

TIPE1 (tumor necrosis factor-α-induced protein 8-like 1 or TNFAIP8L1) is a newly identified member of the TIPE (TNFAIP8) family, which play roles in regulating cell death. However, the biologic functions of TIPE1 in physiologic and pathologic conditions are largely unknown. Here, we report the roles of TIPE1 in hepatocellular carcinoma (HCC). Evaluated by immunohistochemical staining, HCC tissues showed significantly downregulated TIPE1 expression compared with adjacent non-tumor tissues, which positively correlated with tumor pathologic grades and patient survival. Using a homograft tumor model in Balb/c mice, we discovered that TIPE1 significantly diminished the growth and tumor weight of murine liver cancer homografts. Consistently, TIPE1 inhibited both cell growth and colony formation ability of cultured HCC cell lines, which was further identified to be due to TIPE1-inducing apoptosis in a caspase-independent, necrostatin-1 (Nec-1)-insensitive manner. Furthermore, mechanistic investigations revealed that TIPE1 interacted with Rac1, and inhibited the activation of Rac1 and its downstream p65 and c-Jun N-terminal kinase pathway. Moreover, overexpression of constitutively active Rac1 partially rescued the apoptosis induced by TIPE1, and Rac1 knockdown significantly restored the deregulated cell growth induced by TIPE1 small interfering RNA. Our findings revealed that TIPE1 induced apoptosis in HCC cells by negatively regulating Rac1 pathway, and loss of TIPE1 might be a new prognostic indicator for HCC patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B et al. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif 2012; 45: 487–498.

    Article  CAS  Google Scholar 

  2. El-Serag HB, Rudolph KL . Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 2007; 132: 2557–2576.

    Article  CAS  Google Scholar 

  3. Shiraha H, Yamamoto K, Namba M . Human hepatocyte carcinogenesis [review]. Int J Oncol 2013; 42: 1133–1138.

    Article  CAS  PubMed Central  Google Scholar 

  4. Fesik SW . Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 2005; 5: 876–885.

    Article  CAS  PubMed Central  Google Scholar 

  5. Delavallee L, Cabon L, Galan-Malo P, Lorenzo HK, Susin SA . AIF-mediated caspase-independent necroptosis: a new chance for targeted therapeutics. IUBMB Life 2011; 63: 221–232.

    Article  CAS  Google Scholar 

  6. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359: 378–390.

    Article  CAS  PubMed Central  Google Scholar 

  7. Kumar D, Gokhale P, Broustas C, Chakravarty D, Ahmad I, Kasid U . Expression of SCC-S2, an antiapoptotic molecule, correlates with enhanced proliferation and tumorigenicity of MDA-MB 435 cells. Oncogene 2004; 23: 612–616.

    Article  CAS  Google Scholar 

  8. Zhang C, Chakravarty D, Sakabe I, Mewani RR, Boudreau HE, Kumar D et al. Role of SCC-S2 in experimental metastasis and modulation of VEGFR-2, MMP-1, and MMP-9 expression. Mol Ther 2006; 13: 947–955.

    Article  CAS  Google Scholar 

  9. Dong QZ, Zhao Y, Liu Y, Wang Y, Zhang PX, Jiang GY et al. Overexpression of SCC-S2 correlates with lymph node metastasis and poor prognosis in patients with non-small-cell lung cancer. Cancer Sci 2010; 101: 1562–1569.

    Article  CAS  Google Scholar 

  10. Miao Z, Zhao T, Wang Z, Xu Y, Song Y, Wu J et al. SCC-S2 is overexpressed in colon cancers and regulates cell proliferation. Tumour Biol 2012; 33: 2099–2106.

    Article  CAS  Google Scholar 

  11. Shi TY, Cheng X, Yu KD, Sun M, Shao ZM, Wang M et al. Functional variants in TNFAIP8 associated with cervical cancer susceptibility and clinical outcomes. Carcinogenesis 2013; 34: 770–778.

    Article  CAS  Google Scholar 

  12. Woodward MJ, de Boer J, Heidorn S, Hubank M, Kioussis D, Williams O et al. Tnfaip8 is an essential gene for the regulation of glucocorticoid-mediated apoptosis of thymocytes. Cell Death Differ 2010; 17: 316–323.

    Article  CAS  Google Scholar 

  13. Sun H, Gong S, Carmody RJ, Hilliard A, Li L, Sun J et al. TIPE2, a negative regulator of innate and adaptive immunity that maintains immune homeostasis. Cell 2008; 133: 415–426.

    Article  CAS  PubMed Central  Google Scholar 

  14. Gus-Brautbar Y, Johnson D, Zhang L, Sun H, Wang P, Zhang S et al. The anti-inflammatory TIPE2 is an inhibitor of the oncogenic Ras. Mol Cell 2012; 45: 610–618.

    Article  CAS  PubMed Central  Google Scholar 

  15. Sun H, Zhuang G, Chai L, Wang Z, Johnson D, Ma Y et al. TIPE2 controls innate immunity to RNA by targeting the phosphatidylinositol 3-kinase-Rac pathway. J Immunol 2012; 189: 2768–2773.

    Article  CAS  PubMed Central  Google Scholar 

  16. Wang Z, Fayngerts S, Wang P, Sun H, Johnson DS, Ruan Q et al. TIPE2 protein serves as a negative regulator of phagocytosis and oxidative burst during infection. Proc Natl Acad Sci USA 2012; 109: 15413–15418.

    Article  CAS  Google Scholar 

  17. Gomez J, Martinez AC, Gonzalez A, Rebollo A . Dual role of Ras and Rho proteins: at the cutting edge of life and death. Immunol Cell Biol 1998; 76: 125–134.

    Article  CAS  Google Scholar 

  18. Cui J, Zhang G, Hao C, Wang Y, Lou Y, Zhang W et al. The expression of TIPE1 in murine tissues and human cell lines. Mol Immunol 2011; 48: 1548–1555.

    Article  CAS  Google Scholar 

  19. Wilson KD, Li Z, Wagner R, Yue P, Tsao P, Nestorova G et al. Transcriptome alteration in the diabetic heart by rosiglitazone: implications for cardiovascular mortality. PLoS One 2008; 3: e2609.

    Article  PubMed Central  Google Scholar 

  20. Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A, Xavier RJ et al. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 2008; 135: 1311–1323.

    Article  CAS  PubMed Central  Google Scholar 

  21. Ma CH, Zhang Y, Wang XY, Gao LF, Liu H, Guo C et al. Human endostatin gene transfer, either naked or with liposome, has the same inhibitory effect on growth of mouse liver tumor cells in vivo. World J Gastroenterol 2004; 10: 2874–2877.

    Article  CAS  PubMed Central  Google Scholar 

  22. Yue X, Zhang Z, Liang X, Gao L, Zhang X, Zhao D et al. Zinc fingers and homeoboxes 2 inhibits hepatocellular carcinoma cell proliferation and represses expression of Cyclins A and E. Gastroenterology 2012; 142: 1559–1570.

    Article  CAS  PubMed Central  Google Scholar 

  23. Mathews MB, Bernstein RM, Franza BR Jr, Garrels JI . Identity of the proliferating cell nuclear antigen and cyclin. Nature 1984; 309: 374–376.

    Article  CAS  Google Scholar 

  24. Sasi N, Hwang M, Jaboin J, Csiki I, Lu B . Regulated cell death pathways: new twists in modulation of BCL2 family function. Mol Cancer Ther 2009; 8: 1421–1429.

    Article  CAS  PubMed Central  Google Scholar 

  25. Brown JH, Del Re DP, Sussman MA The Rac and Rho hall of fame: a decade of hypertrophic signaling hits. Circ Res 2006; 98: 730–742.

    Article  CAS  Google Scholar 

  26. Ozen C, Yildiz G, Dagcan A, Cevik D, Ors A, Keles U et al. Genetics and epigenetics of liver cancer. Nat Biotechnol 2013; 30: 381–384.

    CAS  Google Scholar 

  27. Filmus J, Capurro M . Glypican-3 and alphafetoprotein as diagnostic tests for hepatocellular carcinoma. Mol Diagn 2004; 8: 207–212.

    Article  Google Scholar 

  28. Wennerberg K, Der CJ . Rho-family GTPases: it's not only Rac and Rho (and I like it). J Cell Sci 2004; 117: 1301–1312.

    Article  CAS  Google Scholar 

  29. Etienne-Manneville S, Hall A . Rho GTPases in cell biology. Nature 2002; 420: 629–635.

    Article  CAS  Google Scholar 

  30. Rossman KL, Der CJ, Sondek J . GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 2005; 6: 167–180.

    Article  CAS  Google Scholar 

  31. Mack NA, Whalley HJ, Castillo-Lluva S, Malliri A . The diverse roles of Rac signaling in tumorigenesis. Cell Cycle 2011; 10: 1571–1581.

    Article  CAS  PubMed Central  Google Scholar 

  32. Joneson T, Bar-Sagi D . Suppression of Ras-induced apoptosis by the Rac GTPase. Mol Cell Biol 1999; 19: 5892–5901.

    Article  CAS  PubMed Central  Google Scholar 

  33. Chaigne-Delalande B, Anies G, Kramer I, Genot E . Nonadherent cells switch to a Rac-mediated, SHIP regulated, Akt activation mode for survival. Oncogene 2008; 27: 1876–1885.

    Article  CAS  Google Scholar 

  34. Debidda M, Williams DA, Zheng Y . Rac1 GTPase regulates cell genomic stability and senescence. J Biol Chem 2006; 281: 38519–38528.

    Article  CAS  Google Scholar 

  35. Edmondson HA, Steiner PE . Primary carcinoma of the liver: a study of 100 cases among 48,900 necropsies. Cancer 1954; 7: 462–503.

    Article  CAS  Google Scholar 

  36. Ishak KG . Pathologic features of chronic hepatitis. A review and update. Am J Clin Pathol 2000; 113: 40–55.

    Article  CAS  Google Scholar 

  37. Luan F, Liu H, Gao L, Liu J, Sun Z, Ju Y et al. Hepatitis B virus protein preS2 potentially promotes HCC development via its transcriptional activation of hTERT. Gut 2009; 58: 1528–1537.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Science Foundation of China (Nos. 81172353, 81372211), Cultivating Project, Major Research Plan of National Natural Science Foundation of China (91129704), Programme for NCET-10-0524, Research Fund for the Doctoral Program of Higher Education of China (RFDP) (20110131110034) and Shandong Provincial Nature Science Foundation for Distinguished Young Scholars JQ200907.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Ma.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Liang, X., Gao, L. et al. TIPE1 induces apoptosis by negatively regulating Rac1 activation in hepatocellular carcinoma cells. Oncogene 34, 2566–2574 (2015). https://doi.org/10.1038/onc.2014.208

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.208

This article is cited by

Search

Quick links