Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A long noncoding RNA critically regulates Bcr-Abl-mediated cellular transformation by acting as a competitive endogenous RNA

Abstract

Aberrant expression of long noncoding RNAs (lncRNAs) is associated with various human cancers. However, the role of lncRNAs in Bcr-Abl-mediated chronic myeloid leukemia (CML) is unknown. In this study, we performed a comprehensive analysis of lncRNAs in human CML cells using an lncRNA cDNA microarray and identified an lncRNA termed lncRNA-BGL3 that acted as a key regulator of Bcr-Abl-mediated cellular transformation. Notably, we observed that lncRNA-BGL3 was highly induced in response to disruption of Bcr-Abl expression or by inhibiting Bcr-Abl kinase activity in K562 cells and leukemic cells derived from CML patients. Ectopic expression of lncRNA-BGL3 sensitized leukemic cells to undergo apoptosis and inhibited Bcr-Abl-induced tumorigenesis. Furthermore, transgenic (TG) mice expressing lncRNA-BGL3 were generated. We found that TG expression of lncRNA-BGL3 alone in mice was sufficient to impair primary bone marrow transformation by Bcr-Abl. Interestingly, we identified that lncRNA-BGL3 was a target of miR-17, miR-93, miR-20a, miR-20b, miR-106a and miR-106b, microRNAs that repress mRNA of phosphatase and tensin homolog (PTEN). Further experiments demonstrated that lncRNA-BGL3 functioned as a competitive endogenous RNA for binding these microRNAs to cross-regulate PTEN expression. Additionally, our experiments have begun to address the mechanism of how lncRNA-BGL3 is regulated in the leukemic cells and showed that Bcr-Abl repressed lncRNA-BGL3 expression through c-Myc-dependent DNA methylation. Taken together, these results reveal that Bcr-Abl-mediated cellular transformation critically requires silence of tumor-suppressor lncRNA-BGL3 and suggest a potential strategy for the treatment of Bcr-Abl-positive leukemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Chen Y, Peng C, Sullivan C, Li D, Li S . Critical molecular pathways in cancer stem cells of chronic myeloid leukemia. Leukemia 2010; 24: 1545–1554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cilloni D, Saglio G . Molecular pathways: BCR-ABL. Clin Cancer Res 2012; 18: 930–937.

    Article  CAS  PubMed  Google Scholar 

  3. Guo G, Qiu X, Wang S, Chen Y, Rothman PB, Wang Z et al. Oncogenic E17K mutation in the pleckstrin homology domain of AKT1 promotes v-Abl-mediated pre-B-cell transformation and survival of Pim-deficient cells. Oncogene 2010; 29: 3845–3853.

    Article  CAS  PubMed  Google Scholar 

  4. Yang J, Wang J, Chen K, Guo G, Xi R, Rothman PB et al. eIF4B phosphorylation by pim kinases plays a critical role in cellular transformation by Abl oncogenes. Cancer Res 2013; 73: 4898–4908.

    Article  CAS  PubMed  Google Scholar 

  5. Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 2007; 316: 1484–1488.

    Article  CAS  PubMed  Google Scholar 

  6. Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J, Adiconis X et al. Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol 2010; 28: 756–756.

    Article  CAS  Google Scholar 

  7. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 2009; 458: 223–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ponting CP, Oliver PL, Reik W . Evolution and functions of long noncoding RNAs. Cell 2009; 136: 629–641.

    Article  CAS  PubMed  Google Scholar 

  9. Klattenhoff CA, Scheuermann JC, Surface LE, Bradley RK, Fields PA, Steinhauser ML et al. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 2013; 152: 570–583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sigova AA, Mullen AC, Molinie B, Gupta S, Orlando DA, Guenther MG et al. Divergent transcription of long noncoding RNA/mRNA gene pairs in embryonic stem cells. Proc Natl Acad Sci USA 2013; 110: 2876–2881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang KC, Chang HY . Molecular mechanisms of long noncoding RNAs. Mol Cell 2011; 43: 904–914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yoon JH, Abdelmohsen K, Srikantan S, Yang X, Martindale JL, De S et al. LincRNA-p21 suppresses target mRNA translation. Mol Cell 2012; 47: 648–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Prensner JR, Iyer MK, Balbin OA, Dhanasekaran SM, Cao Q, Brenner JC et al. Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol 2011; 29: 742–749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang F, Huo XS, Yuan SX, Zhang L, Zhou WP, Wang F et al. Repression of the long noncoding RNA-LET by histone deacetylase 3 contributes to hypoxia-mediated metastasis. Mol Cell 2013; 49: 1083–1096.

    Article  CAS  PubMed  Google Scholar 

  15. Tsai MC, Spitale RC, Chang HY . Long intergenic noncoding RNAs: new links in cancer progression. Cancer Res 2011; 71: 3–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010; 464: 1071–1076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 2010; 329: 689–693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ji P, Diederichs S, Wang W, Boing S, Metzger R, Schneider PM et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 2003; 22: 8031–8041.

    Article  PubMed  Google Scholar 

  19. Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 2010; 39: 925–938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guffanti A, Iacono M, Pelucchi P, Kim N, Solda G, Croft LJ et al. A transcriptional sketch of a primary human breast cancer by 454 deep sequencing. BMC Genomics 2009; 10: 163.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Luo JH, Ren B, Keryanov S, Tseng GC, Rao UN, Monga SP et al. Transcriptomic and genomic analysis of human hepatocellular carcinomas and hepatoblastomas. Hepatology 2006; 44: 1012–1024.

    Article  CAS  PubMed  Google Scholar 

  22. Heuston EF, Lemon KT, Arceci RJ . The beginning of the road for non-coding RNAs in normal hematopoiesis and hematologic malignancies. Front Genet 2011; 2: 94.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y et al. Long noncoding RNA programs active chromatin domain to coordinate homeotic gene expression. J Invest Dermatol 2011; 131: S63–S63.

    Google Scholar 

  24. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP . A ceRNA hypothesis: the Rosetta stone of a hidden RNA language? Cell 2011; 146: 353–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tay Y, Kats L, Salmena L, Weiss D, Tan SM, Ala U et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 2011; 147: 344–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Karreth FA, Tay Y, Perna D, Ala U, Tan SM, Rust AG et al. In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell 2011; 147: 382–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 2011; 147: 358–369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP . A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 2010; 465: 1033–1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. de Giorgio A, Krell J, Harding V, Stebbing J, Castellano L . Emerging roles of ceRNAs in cancer: insights from the regulation of PTEN. Mol Cell Biol 2013; 33: 3976–3982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kiefer CM, Lee J, Hou C, Dale RK, Lee YT, Meier ER et al. Distinct Ldb1/NLI complexes orchestrate gamma-globin repression and reactivation through ETO2 in human adult erythroid cells. Blood 2011; 118: 6200–6208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chan CM, Fulton J, Montiel-Duarte C, Collins HM, Bharti N, Wadelin FR et al. A signature motif mediating selective interactions of BCL11A with the NR2E/F subfamily of orphan nuclear receptors. Nucleic Acids Res 2013; 41: 9663–9679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bu D, Yu K, Sun S, Xie C, Skogerbo G, Miao R et al. NONCODE v3.0: integrative annotation of long noncoding RNAs. Nucleic Acids Res 2012; 40: D210–215.

    Article  CAS  PubMed  Google Scholar 

  33. Nishikawa T, Ota T, Isogai T . Prediction whether a human cDNA sequence contains initiation codon by combining statistical information and similarity with protein sequences. Bioinformatics 2000; 16: 960–967.

    Article  CAS  PubMed  Google Scholar 

  34. Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L et al. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 2007; 35: W345–W349.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lin MF, Jungreis I, Kellis M . PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions. Bioinformatics 2011; 27: I275–I282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gesbert F, Griffin JD . Bcr/Abl activates transcription of the Bcl-X gene through STAT5. Blood 2000; 96: 2269–2276.

    CAS  PubMed  Google Scholar 

  37. Lu D, Ma Y, Zhang W, Bao D, Dong W, Lian H et al. Knockdown of cytochrome P450 2E1 inhibits oxidative stress and apoptosis in the cTnT(R141W) dilated cardiomyopathy transgenic mice. Hypertension 2012; 60: 81–89.

    Article  CAS  PubMed  Google Scholar 

  38. Qiu X, Guo G, Chen K, Kashiwada M, Druker BJ, Rothman PB et al. A requirement for SOCS-1 and SOCS-3 phosphorylation in Bcr-Abl-induced tumorigenesis. Neoplasia 2012; 14: 547–558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen Y, Chen J, Wang H, Shi J, Wu K, Liu S et al. HCV-induced miR-21 contributes to evasion of host immune system by targeting MyD88 and IRAK1. PLoS Pathog 2013; 9: e1003248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Venturini L, Battmer K, Castoldi M, Schultheis B, Hochhaus A, Muckenthaler MU et al. Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34(+) cells. Blood 2007; 109: 4399–4405.

    Article  CAS  PubMed  Google Scholar 

  41. Prasanth KV, Prasanth SG, Xuan Z, Hearn S, Freier SM, Bennett CF et al. Regulating gene expression through RNA nuclear retention. Cell 2005; 123: 249–263.

    Article  CAS  PubMed  Google Scholar 

  42. Ma F, Xu S, Liu X, Zhang Q, Xu X, Liu M et al. The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-gamma. Nat Immunol 2011; 12: 861–869.

    Article  CAS  PubMed  Google Scholar 

  43. Mizuno S, Chijiwa T, Okamura T, Akashi K, Fukumaki Y, Niho Y et al. Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood 2001; 97: 1172–1179.

    Article  CAS  PubMed  Google Scholar 

  44. Sawyers CL, Callahan W, Witte ON . Dominant negative Myc blocks transformation by Abl oncogenes. Cell 1992; 70: 901–910.

    Article  CAS  PubMed  Google Scholar 

  45. Xie S, Lin H, Sun T, Arlinghaus RB . Jak2 is involved in c-Myc induction by Bcr-Abl. Oncogene 2002; 21: 7137.

    Article  CAS  PubMed  Google Scholar 

  46. Mott JL, Kurita S, Cazanave SC, Bronk SF, Werneburg NW, Fernandez-Zapico ME . Transcriptional suppression of mir-29b-1/mir-29a promoter by c-Myc, hedgehog, and NF-kappaB. J Cell Biochem 2010; 110: 1155–1164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mishra A, Liu S, Sams GH, Curphey DP, Santhanam R, Rush LJ et al. Aberrant overexpression of IL-15 initiates large granular lymphocyte leukemia through chromosomal instability and DNA hypermethylation. Cancer Cell 2012; 22: 645–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Barcelona SL, Thompson AA, Cote CJ . Intraoperative pediatric blood transfusion therapy: a review of common issues. Part I: Hematologic and physiologic differences from adults; metabolic and infectious risks. Pediatr Anesth 2005; 15: 716–726.

    Article  Google Scholar 

  49. O'Hare T, Deininger MW, Eide CA, Clackson T, Druker BJ . Targeting the BCR-ABL signaling pathway in therapy-resistant Philadelphia chromosome-positive leukemia. Clin Cancer Res 2011; 17: 212–221.

    Article  CAS  PubMed  Google Scholar 

  50. Peng C, Chen YY, Yang ZF, Zhang HJ, Osterby L, Rosmarin AG et al. PTEN is a tumor suppressor in CML stem cells and BCR-ABL-induced leukemias in mice. Blood 2010; 115: 626–635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fontana L, Fiori ME, Albini S, Cifaldi L, Giovinazzi S, Forloni M et al. Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM. PLoS One 2008; 3: e2236.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chen CC, Stairs DB, Boxer RB, Belka GK, Horseman ND, Alvarez JV et al. Autocrine prolactin induced by the Pten-Akt pathway is required for lactation initiation and provides a direct link between the Akt and Stat5 pathways. Genes Dev 2012; 26: 2154–2168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ørom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G et al. Long noncoding RNAs with enhancer-like function in human cells. Cell 2010; 143: 46–58.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wang S, Li H, Chen YH, Wei HT, Gao GF, Liu HQ et al. Transport of influenza virus neuraminidase (NA) to host cell surface is regulated by ARHGAP21 and Cdc42 proteins. J Biol Chem 2012; 287: 9804–9816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen JL, Limnander A, Rothman PB . Pim-1 and Pim-2 kinases are required for efficient pre-B-cell transformation by v-Abl oncogene. Blood 2008; 111: 1677–1685.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Paul B Rothman from the School of Medicine, The Johns Hopkins University for valuable discussions. This work was supported by the National Key Technologies Research and Development Program of China (2013ZX10004-611), National Basic Research Program (973) of China (2014CB541804), Intramural grant of the Chinese Academy of Sciences (KJZD-EW-L01-3), Natural Science Foundation of China (81171943, U1305212) and Hundreds of Talents Program of Chinese Academy of Sciences 2009–2014 to J-LC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J-L Chen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, G., Kang, Q., Zhu, X. et al. A long noncoding RNA critically regulates Bcr-Abl-mediated cellular transformation by acting as a competitive endogenous RNA. Oncogene 34, 1768–1779 (2015). https://doi.org/10.1038/onc.2014.131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.131

This article is cited by

Search

Quick links