Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The role of DAB2IP in androgen receptor activation during prostate cancer progression

Abstract

Altered androgen-receptor (AR) expression and/or constitutively active AR are commonly associated with prostate cancer (PCa) progression. Targeting AR remains a focal point for designing new strategy of PCa therapy. Here, we have shown that DAB2IP, a novel tumor suppressor in PCa, can inhibit AR-mediated cell growth and gene activation in PCa cells via distinct mechanisms. DAB2IP inhibits the genomic pathway by preventing AR nuclear translocation or phosphorylation and suppresses the non-genomic pathway via its unique functional domain to inactivate c-Src. Also, DAB2IP is capable of suppressing AR activation in an androgen-independent manner. In addition, DAB2IP can inhibit several AR splice variants showing constitutive activity in PCa cells. In DAB2IP−/− mice, the prostate gland exhibits hyperplastic epithelia, in which AR becomes more active. Consistently, DAB2IP expression inversely correlates with AR activation status particularly in recurrent or metastatic PCa patients. Taken together, DAB2IP is a unique intrinsic AR modulator in normal cells, and likely can be further developed into a therapeutic agent for PCa.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Huggins C, Hodges CV . Studies on prostatic cancer I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate (Reprinted from Cancer Res, vol 1, pg 293-297, 1941). J Urol 2002; 167: 948–951.

    Article  CAS  Google Scholar 

  2. Heinlein CA, Chang CS . Androgen receptor in prostate cancer. Endocr Rev 2004; 25: 276–308.

    Article  CAS  Google Scholar 

  3. Feldman BJ, Feldman D . The development of androgen-independent prostate cancer. Nat Rev Cancer 2001; 1: 34–45.

    Article  CAS  Google Scholar 

  4. Visakorpi T, Hyytinen E, Koivisto P, Tanner M, Keinanen R, Palmberg C et al. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 1995; 9: 401–406.

    Article  CAS  Google Scholar 

  5. McKenna NJ, Lanz RB, O'Malley BW . Nuclear receptor coregulators: Cellular and molecular biology. Endocr Rev 1999; 20: 321–344.

    CAS  Google Scholar 

  6. Brooke GN, Bevan CL . The role of androgen receptor mutations in prostate cancer progression. Curr Genomics 2009; 10: 18–25.

    Article  CAS  Google Scholar 

  7. Watson PA, Chen YNF, Balbas MD, Wongvipat J, Socci ND, Viale A et al. Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor. Proc Natl Acad Sci USA 2010; 107: 16759–16765.

    Article  CAS  Google Scholar 

  8. Guo ZY, Yang X, Sun F, Jiang RC, Linn DE, Chen HG et al. A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res 2009; 69: 2305–2313.

    Article  CAS  Google Scholar 

  9. Sun SH, Sprenger CCT, Vessella RL, Haugk K, Soriano K, Mostaghel EA et al. Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant. J Clin Invest 2010; 120: 2715–2730.

    Article  CAS  Google Scholar 

  10. Shang YF, Myers M, Brown M . Formation of the androgen receptor transcription complex. Mol Cell 2002; 9: 601–610.

    Article  CAS  Google Scholar 

  11. Wang QB, Li W, Liu XS, Carroll JS, Janne OA, Keeton EK et al. A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol Cell 2007; 27: 380–392.

    Article  Google Scholar 

  12. Wang QB, Carroll JS, Brown M . Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking. Mol Cell 2005; 19: 631–642.

    Article  CAS  Google Scholar 

  13. Wen Y, Hu MCT, Makino K, Spohn B, Bartholomeusz G, Yan DH et al. HER-2/neu promotes androgen-independent survival and growth of prostate cancer cells through the Akt pathway. Cancer Res 2000; 60: 6841–6845.

    CAS  Google Scholar 

  14. Craft N, Shostak Y, Carey M, Sawyers CL . A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat Med 1999; 5: 280–285.

    Article  CAS  Google Scholar 

  15. Wang Z, Tseng CP, Pong RC, Chen H, McConnell JD, Navone N et al. The mechanism of growth-inhibitory effect of DOC-2/DAB2 in prostate cancer — characterization of a novel GTPase-activating protein associated with N-terminal domain of DOC-2/DAB2. J Biol Chem 2002; 277: 12622–12631.

    Article  CAS  Google Scholar 

  16. Xie DX, Gore C, Zhou J, Pong RC, Zhang HF, Yu LY et al. DAB2IP coordinates both PI3K-Akt and ASK1 pathways for cell survival and apoptosis. Proc Natl Acad Sci USA 2009; 106: 19878–19883.

    Article  CAS  Google Scholar 

  17. Chen H, Toyooka S, Gazdar AF, Hsieh JT . Epigenetic regulation of a novel tumor suppressor gene (hDAB2IP) in prostate cancer cell lines. J Biol Chem 2003; 278: 3121–3130.

    Article  CAS  Google Scholar 

  18. Chen H, Tu SW, Hsieh JT . Down-regulation of human DAB2IP gene expression mediated by polycomb Ezh2 complex and histone deacetylase in prostate cancer. J Biol Chem 2005; 280: 22437–22444.

    Article  CAS  Google Scholar 

  19. Yano M, Toyooka S, Tsukuda K, Dote H, Ouchida M, Hanabata T et al. Aberrant promoter methylation of human DAB2 interactive protein (hDAB2IP) gene in lung cancers. Int J Cancer 2005; 113: 59–66.

    Article  CAS  Google Scholar 

  20. Dote H, Toyooka S, Tsukuda K, Yano M, Ota T, Murakami M et al. Aberrant promoter methylation in human DAB2 interactive protein (hDAB2IP) gene in gastrointestinal tumour. Br J Cancer 2005; 92: 1117–1125.

    Article  CAS  Google Scholar 

  21. Dote H, Toyooka S, Tsukuda K, Yano M, Ouchida M, Doihara H et al. Aberrant promoter methylation in human DAB2 interactive protein (hDAB2IP) gene in breast cancer. Clin Cancer Res 2004; 10: 2082–2089.

    Article  CAS  Google Scholar 

  22. Qiu GH, Xie HM, Wheelhouse N, Harrison D, Chen GG, Salto-Tellez M et al. Differential expression of hDAB2IPA and hDAB2IPB in normal tissues and promoter methylation of hDAB2IPA in hepatocellular carcinoma. J Hepatol 2007; 46: 655–663.

    Article  CAS  Google Scholar 

  23. Xie DX, Gore C, Liu J, Pong RC, Mason R, Hao GY et al. Role of DAB2IP in modulating epithelial-to-mesenchymal transition and prostate cancer metastasis. Proc Natl Acad Sci USA 2010; 107: 2485–2490.

    Article  CAS  Google Scholar 

  24. Min J, Zaslavsky A, Fedele G, McLaughlin SK, Reczek EE, De Raedt T et al. An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-kappa B. Nat Med 2010; 16: 286–U282.

    Article  CAS  Google Scholar 

  25. Gioeli D, Black BE, Gordon V, Spencer A, Kesler CT, Eblen ST et al. Stress kinase signaling regulates androgen receptor phosphorylation, transcription, and localization. Mol Endocrinol 2006; 20: 503–515.

    Article  CAS  Google Scholar 

  26. Kesler CT, Gioeli D, Conaway MR, Weber MJ, Paschal BM . Subcellular localization modulates activation function 1 domain phosphorylation in the androgen receptor. Mol Endocrinol 2007; 21: 2071–2084.

    Article  CAS  Google Scholar 

  27. Chen S, Gulla S, Cai C, Balk SP . Androgen receptor serine 81 phosphorylation mediates chromatin binding and transcriptional activation. J Biol Chem 2012; 287: 8571–8583.

    Article  CAS  Google Scholar 

  28. Gordon V, Bhadel S, Wunderlich W, Zhang J, Ficarro SB, Mollah SA et al. CDK9 regulates AR promoter selectivity and cell growth through serine 81 phosphorylation. Mol Endocrinol 2010; 24: 2267–2280.

    Article  CAS  Google Scholar 

  29. Min W, Lin Y, Tang SB, Yu LY, Zhang HF, Wan T et al. AIP1 recruits phosphatase PP2A to ASK1 in tumor necrosis factor-induced ASK1-JNK activation. Circ Res 2008; 102: 840–848.

    Article  CAS  Google Scholar 

  30. Yang CS, Vitto MJ, Busby SA, Garcia BA, Kesler CT, Gioeli D et al. Simian virus 40 small t antigen mediates conformation-dependent transfer of protein phosphatase 2A onto the androgen receptor. Mol Cell Biol 2005; 25: 1298–1308.

    Article  CAS  Google Scholar 

  31. Verras M, Brown J, Li XM, Nusse R, Sun ZJ . Wnt3a growth factor induces androgen receptor-mediated transcription and enhances cell growth in human prostate cancer cells. Cancer Res 2004; 64: 8860–8866.

    Article  CAS  Google Scholar 

  32. Hu R, Dunn TA, Wei S, Isharwal S, Veltri RW, Humphreys E et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res 2009; 69: 16–22.

    Article  CAS  Google Scholar 

  33. Guo Z, Yang X, Sun F, Jiang R, Linn DE, Chen H et al. A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res 2009; 69: 2305–2313.

    Article  CAS  Google Scholar 

  34. Cao WH, Luttrell LM, Medvedev AV, Pierce KL, Daniel KW, Dixon TM et al. Direct binding of activated c-Src to the beta(3)-adrenergic receptor is required for MAP kinase activation. J Biol Chem 2000; 275: 38131–38134.

    Article  CAS  Google Scholar 

  35. Wright CD, Chen QH, Baye NL, Huang Y, Healy CL, Kasinathan S et al. Nuclear alpha 1-adrenergic receptors signal activated Erk localization to caveolae in adult cardiac myocytes. Circ Res 2008; 103: 992–1000.

    Article  CAS  Google Scholar 

  36. Zhou XE, Suino-Powell KM, Li J, He YZ, MacKeigan JP, Melcher K et al. Identification of SRC3/AIB1 as a preferred coactivator for hormone-activated androgen receptor. J Biol Chem 2010; 285: 9161–9171.

    Article  CAS  Google Scholar 

  37. Duggan D, Zheng SL, Knowlton M, Benitez D, Dimitrov L, Wiklund F et al. Two genome-wide association studies of aggressive prostate cancer implicate putative prostate tumor suppressor gene DAB21P. J Natl Cancer Inst 2007; 99: 1836–1844.

    Article  CAS  Google Scholar 

  38. Debes JD, Tindall DJ . Mechanisms of androgen-refractory prostate cancer. N Engl J Med 2004; 351: 1488–1490.

    Article  CAS  Google Scholar 

  39. Chen H, Toyooka S, Gazdar AF, Hsieh JT . Epigenetic regulation of a novel tumor suppressor gene (hDAB2IP) in prostate cancer cell lines. J Biol Chem 2003; 278: 3121–3130.

    Article  CAS  Google Scholar 

  40. Chen H, Tu SW, Hsieh JT . Down-regulation of human DAB2IP gene expression mediated by polycomb Ezh2 complex and histone deacetylase in prostate cancer. J Biol Chem 2005; 280: 22437–22444.

    Article  CAS  Google Scholar 

  41. Min J, Zaslavsky A, Fedele G, McLaughlin SK, Reczek EE, De Raedt T et al. An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-kappaB. Nat Med 2010; 16: 286–294.

    Article  CAS  Google Scholar 

  42. Vidal M, Gigoux V, Garbay C . SH2 and SH3 domains as targets for anti-proliferative agents. Crit Rev Oncol Hematol 2001; 40: 175–186.

    Article  CAS  Google Scholar 

  43. Mayer BJ . SH3 domains: complexity in moderation. J Cell Sci 2001; 114: 1253–1263.

    CAS  PubMed  Google Scholar 

  44. Yu EY, Wilding G, Posadas E, Gross M, Culine S, Massard C et al. Phase II study of dasatinib in patients with metastatic castration-resistant prostate cancer. Clin Cancer Res 2009; 15: 7421–7428.

    Article  CAS  Google Scholar 

  45. Araujo JC, Mathew P, Armstrong AJ, Braud EL, Posadas E, Lonberg M et al. Dasatinib combined with docetaxel for castration-resistant prostate cancer: results from a phase 1-2 study. Cancer 2012; 118: 63–71.

    Article  CAS  Google Scholar 

  46. Tatarov O, Mitchell TJ, Seywright M, Leung HY, Brunton VG, Edwards J . Src family kinase activity is up-regulated in hormone-refractory prostate cancer. Clin Cancer Res 2009; 15: 3540–3549.

    Article  CAS  Google Scholar 

  47. Cai HJ, Babic I, Wei X, Huang JT, Witte ON . Invasive prostate carcinoma driven by c-Src and androgen receptor synergy. Cancer Res 2011; 71: 862–872.

    Article  CAS  Google Scholar 

  48. Sun S, Sprenger CC, Vessella RL, Haugk K, Soriano K, Mostaghel EA et al. Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant. J Clin Invest 2010; 120: 2715–2730.

    Article  CAS  Google Scholar 

  49. Harvey JM, Clark GM, Osborne CK, Allred DC . Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J Clin Oncol 1999; 17: 1474–1481.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Jiang Min for editorial assistant and Rui Li for technical support. This work is supported in part by United States Army Grant W81XWH-04-1-0222 (JTH) and the National Natural Science Foundation of China (NSFC 81202014 to KW).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D Xie or J-T Hsieh.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, K., Liu, J., Tseng, SF. et al. The role of DAB2IP in androgen receptor activation during prostate cancer progression. Oncogene 33, 1954–1963 (2014). https://doi.org/10.1038/onc.2013.143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.143

Keywords

This article is cited by

Search

Quick links