Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Checkpoint control and cancer

Abstract

DNA-damaging therapies represent the most frequently used non-surgical anticancer strategies in the treatment of human tumors. These therapies can kill tumor cells, but at the same time they can be particularly damaging and mutagenic to healthy tissues. The efficacy of DNA-damaging treatments can be improved if tumor cell death is selectively enhanced, and the recent application of poly-(ADP-ribose) polymerase inhibitors in BRCA1/2-deficient tumors is a successful example of this. DNA damage is known to trigger cell-cycle arrest through activation of DNA-damage checkpoints. This arrest can be reversed once the damage has been repaired, but irreparable damage can promote apoptosis or senescence. Alternatively, cells can reenter the cell cycle before repair has been completed, giving rise to mutations. In this review we discuss the mechanisms involved in the activation and inactivation of DNA-damage checkpoints, and how the transition from arrest and cell-cycle re-entry is controlled. In addition, we discuss recent attempts to target the checkpoint in anticancer strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Agami R, Bernards R . (2000). Distinct initiation and maintenance mechanisms cooperate to induce G1 cell cycle arrest in response to DNA damage. Cell 102: 55–66.

    Article  CAS  PubMed  Google Scholar 

  • Ahn J, Schwarz J, Piwnica-Worms H, Canman C . (2000). Threonine 68 phosphorylation by ataxia telangiectasia mutated is required for efficient activation of Chk2 in response to ionizing radiation. Cancer Res 60: 5934–5936.

    CAS  PubMed  Google Scholar 

  • Ahn J, Urist M, Prives C . (2003). Questioning the role of checkpoint kinase 2 in the p53 DNA damage response. J Biol Chem 278: 20480–20489.

    CAS  PubMed  Google Scholar 

  • Alvarez-Fernandez M, Halim VA, Krenning L, Aprelia M, Mohammed S, Heck AJ et al. (2010). Recovery from a DNA-damage-induced G2 arrest requires Cdk-dependent activation of FoxM1. EMBO Rep 11: 452–458.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson VE, Walton MI, Eve PD, Boxall KJ, Antoni L, Caldwell JJ et al. (2011). CCT241533 is a potent and selective inhibitor of CHK2 that potentiates the cytotoxicity of PARP inhibitors. Cancer Res 71: 463–472.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bakkenist C, Kastan M . (2003). DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421: 499–506.

    CAS  PubMed  Google Scholar 

  • Bartek J, Lukas J . (2003). Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3: 421–429.

    Article  CAS  PubMed  Google Scholar 

  • Batchelor E, Loewer A, Lahav G . (2009). The ups and downs of p53: understanding protein dynamics in single cells. Nat Rev Cancer 9: 371–377.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Batchelor E, Loewer A, Mock C, Lahav G . (2011). Stimulus-dependent dynamics of p53 in single cells. Mol Syst Biol 7: 488.

    PubMed  PubMed Central  Google Scholar 

  • Batchelor E, Mock CS, Bhan I, Loewer A, Lahav G . (2008). Recurrent initiation: a mechanism for triggering p53 pulses in response to DNA damage. Mol Cell 30: 277–289.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bekker-Jensen S, Mailand N . (2010). Assembly and function of DNA double-strand break repair foci in mammalian cells. DNA Repair 9: 1219–1228.

    CAS  PubMed  Google Scholar 

  • Belova G, Demidov ON, Fornace AJ, Bulavin DV . (2005). Chemical inhibition of Wip1 phosphatase contributes to suppression of tumorigenesis. Cancer Biol Ther 4: 1154–1158.

    CAS  PubMed  Google Scholar 

  • Bennetzen MV, Larsen DH, Bunkenborg J, Bartek J, Lukas J, Andersen JS . (2010). Site-specific phosphorylation dynamics of the nuclear proteome during the DNA damage tesponse. Mol Cell Proteomics 9: 1314–1323.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bensimon A, Schmidt A, Ziv Y, Elkon R, Wang S-Y, Chen DJ et al. (2010). ATM-dependent and -independent dynamics of the nuclear phosphoproteome after DNA damage. Sci Signal 3: rs3.

    CAS  PubMed  Google Scholar 

  • Bulavin D, Higashimoto Y, Popoff I, Gaarde W, Basrur V, Potapova O . (2001). Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase. Nature 411: 102–107.

    CAS  PubMed  Google Scholar 

  • Bulavin DV, Demidov ON, Saito Si, Kauraniemi P, Phillips C, Amundson SA et al. (2002). Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Nat Genet 31: 210–215.

    CAS  PubMed  Google Scholar 

  • Bulavin DV, Phillips C, Nannenga B, Timofeev O, Donehower LA, Anderson CW et al. (2004). Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the p16Ink4a–p19Arf pathway. Nat Genet 36: 343–350.

    CAS  PubMed  Google Scholar 

  • Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP et al. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282: 1497–1501.

    CAS  PubMed  Google Scholar 

  • Carlessi L, Buscemi G, Fontanella E, Delia D . (2010). A protein phosphatase feedback mechanism regulates the basal phosphorylation of Chk2 kinase in the absence of DNA damage. Biochim Biophys Acta 1803: 1213–1223.

    CAS  PubMed  Google Scholar 

  • Castellino R, De Bortoli M, Lu X, Moon S-H, Nguyen T-A, Shepard M et al. (2008). Medulloblastomas overexpress the p53-inactivating oncogene WIP1/PPM1D. J Neurooncol 86: 245–256.

    CAS  PubMed  Google Scholar 

  • Cha H, Lowe JM, Li H, Lee J-S, Belova GI, Bulavin DV et al. (2010). Wip1 directly dephosphorylates γ-H2AX and attenuates the DNA damage response. Cancer Res 70: 4112–4122.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chailleux C, Tyteca S, Papin C, Boudsocq F, Puget N, Courilleau C et al. (2010). Physical interaction between the histone acetyl transferase Tip60 and the DNA double-strand breaks sensor MRN complex. Biochem J 426: 365–371.

    CAS  PubMed  Google Scholar 

  • Chini C, Chen J . (2003). Human claspin is required for replication checkpoint control. J Biol Chem 278: 30057–30062.

    CAS  PubMed  Google Scholar 

  • Chowdhury D, Keogh M, Ishii H, Peterson C, Buratowski S, Lieberman J . (2005). Gamma-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair. Mol Cell 20: 801–809.

    CAS  PubMed  Google Scholar 

  • Ciccia A, Elledge SJ . (2010). The DNA damage response: making it safe to play with knives. Mol Cell 40: 179–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cimprich K, Cortez D . (2008). ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 9: 616–627.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cotta-Ramusino C, McDonald ER, Hurov K, Sowa ME, Harper JW, Elledge SJ . (2011). A DNA damage response screen identifies RHINO, a 9-1-1 and TopBP1 interacting protein required for ATR signaling. Science 332: 1313–1317.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cuadrado M, Gutierrez-Martinez P, Swat A, Nebreda AR, Fernandez-Capetillo O . (2009). p27Kip1 stabilization is essential for the maintenance of cell cycle arrest in response to DNA damage. Cancer Res 69: 8726–8732.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dai C, Gu W . (2010). p53 post-translational modification: deregulated in tumorigenesis. Trends Mol Med 16: 528–536.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dalvai M, Mondesert O, Bourdon JC, Ducommun B, Dozier C . (2011). Cdc25B is negatively regulated by p53 through Sp1 and NF-Y transcription factors. Oncogene 30: 2282–2288.

    CAS  PubMed  Google Scholar 

  • Falck J, Coates J, Jackson SP . (2005). Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434: 605–611.

    CAS  PubMed  Google Scholar 

  • Falck J, Mailand N, Syljuasen RG, Bartek J, Lukas J . (2001). The ATM–Chk2–Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410: 842–847.

    CAS  PubMed  Google Scholar 

  • Ferguson AM, White LS, Donovan PJ, Piwnica-Worms H . (2005). Normal cell cycle and checkpoint responses in mice and cells lacking Cdc25B and Cdc25C protein phosphatases. Mol Cell Biol 25: 2853–2860.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fiscella M, Zhang H, Fan S, Sakaguchi K, Shen S, Mercer W . (1997). Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner. Proc Natl Acad Sci USA 94: 6048–6053.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Forrest A, Gabrielli B . (2001). Cdc25B activity is regulated by 14-3-3. Oncogene 20: 4393–4401.

    CAS  PubMed  Google Scholar 

  • Fracasso P, Williams K, Chen R, Picus J, Ma C, Ellis M et al. (2010). A phase 1 study of UCN-01 in combination with irinotecan in patients with resistant solid tumor malignancies. Cancer Chemother Pharmacol 67: 1225–1237.

    PubMed  PubMed Central  Google Scholar 

  • Freeman A, Dapic V, Monteiro A . (2010). Negative regulation of CHK2 activity by protein phosphatase 2A is modulated by DNA damage. Cell Cycle 9: 736–747.

    CAS  PubMed  Google Scholar 

  • Freeman A, Monteiro A . (2010). Phosphatases in the cellular response to DNA damage. Cell Commun Signal 8: 27.

    PubMed  PubMed Central  Google Scholar 

  • Fujimoto H, Onishi N, Kato N, Takekawa M, Xu XZ, Kosugi A et al. (2005). Regulation of the antioncogenic Chk2 kinase by the oncogenic Wip1 phosphatase. Cell Death Differ 13: 1170–1180.

    PubMed  Google Scholar 

  • Goodarzi A, Jonnalagadda J, Douglas P, Young D, Ye R, Moorhead G . (2004). Autophosphorylation of ataxia-telangiectasia mutated is regulated by protein phosphatase 2A. EMBO J 23: 4451–4461.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta M, Gupta SK, Hoffman B, Liebermann DA . (2006). Gadd45a and Gadd45b protect hematopoietic cells from UV-induced apoptosis via distinct signaling pathways, including p38 activation and JNK inhibition. J Biol Chem 281: 17552–17558.

    CAS  PubMed  Google Scholar 

  • Harrison M, Li J, Degenhardt Y, Hoey T, Powers S . (2004). Wip1-deficient mice are resistant to common cancer genes. Trends Mol Med 10: 359–361.

    CAS  PubMed  Google Scholar 

  • Hirai H, Arai T, Okada M, Nishibata T, Kobayashi M, Sakai N et al. (2010). MK-1775, a small molecule Wee1 inhibitor, enhances anti-tumor efficacy of various DNA-damaging agents, including 5-fluorouracil. Cancer Biol Ther 9: 514–522.

    CAS  PubMed  Google Scholar 

  • Hirai H, Iwasawa Y, Okada M, Arai T, Nishibata T, Kobayashi M et al. (2009). Small-molecule inhibition of Wee1 kinase by MK-1775 selectively sensitizes p53-deficient tumor cells to DNA-damaging agents. Mol Cancer Ther 8: 2992–3000.

    CAS  PubMed  Google Scholar 

  • Hirao A, Cheung A, Duncan G, Girard P, Elia A, Wakeham A . (2002). Chk2 is a tumor suppressor that regulates apoptosis in both an ataxia telangiectasia mutated (ATM)-dependent and an ATM-independent manner. Mol Cell Biol 22: 6521–6532.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirao A, Kong Y-Y, Matsuoka S, Wakeham A, Ruland J, Yoshida H et al. (2000). DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287: 1824–1827.

    CAS  PubMed  Google Scholar 

  • Imbriano C, Gurtner A, Cocchiarella F, Di Agostino S, Basile V, Gostissa M et al. (2005). Direct p53 transcriptional repression: in vivo analysis of CCAAT-containing G2/M promoters. Mol Cell Biol 25: 3737–3751.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jack MT, Woo RA, Hirao A, Cheung A, Mak TW, Lee PWK . (2002). Chk2 is dispensable for p53-mediated G1 arrest but is required for a latent p53-mediated apoptotic response. Proc Natl Acad Sci USA 99: 9825–9829.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jallepalli PV, Lengauer C, Vogelstein B, Bunz F . (2003). The Chk2 tumor suppressor is not required for p53 responses in human cancer cells. J Biol Chem 278: 20475–20479.

    CAS  PubMed  Google Scholar 

  • Jang Y-J, Ma S, Terada Y, Erikson RL . (2002). Phosphorylation of threonine 210 and the role of serine 137 in the regulation of mammalian Polo-like kinase. J Biol Chem 277: 44115–44120.

    CAS  PubMed  Google Scholar 

  • Jazayeri A, Falck J, Lukas C, Bartek J, Smith GCM, Lukas J et al. (2006). ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol 8: 37–45.

    CAS  PubMed  Google Scholar 

  • Jiang H, Reinhardt HC, Bartkova J, Tommiska J, Blomqvist C, Nevanlinna H et al. (2009). The combined status of ATM and p53 link tumor development with therapeutic response. Genes Dev 23: 1895–1909.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin J, Ang XL, Ye X, Livingstone M, Harper JW . (2008). Differential roles for checkpoint kinases in DNA damage-dependent degradation of the Cdc25A protein phosphatase. J Biol Chem 283: 19322–19328.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin J, Shirogane T, Xu L, Nalepa G, Qin J, Elledge S . (2003). SCFbeta–TRCP links Chk1 signaling to degradation of the Cdc25A protein phosphatase. Genes Dev 17: 3062–3074.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kasahara K, Goto H, Enomoto M, Tomono Y, Kiyono T, Inagaki M . (2010). 14-3-3[gamma] mediates Cdc25A proteolysis to block premature mitotic entry after DNA damage. EMBO J 29: 2802–2812.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer A, Mailand N, Lukas C, Syljuasen R, Wilkinson C, Nigg E . (2004). Centrosome-associated Chk1 prevents premature activation of cyclin-B–Cdk1 kinase. Nat Cell Biol 6: 884–891.

    PubMed  Google Scholar 

  • Kumagai A, Kim S, Dunphy W . (2004). Claspin and the activated form of ATR–ATRIP collaborate in the activation of Chk1. J Biol Chem 279: 49599–49608.

    CAS  PubMed  Google Scholar 

  • Kuntz K, O'Connell MJ . (2009). The G2 DNA damage checkpoint: could this ancient regulator be the Achilles heel of cancer? Cancer Biol Ther 8: 1433–1439.

    CAS  PubMed  Google Scholar 

  • Lafarga V, Cuadrado A, Lopez de Silanes I, Bengoechea R, Fernandez-Capetillo O, Nebreda AR . (2009). p38 mitogen-activated protein kinase- and HuR-dependent stabilization of p21Cip1 mRNA mediates the G1/S checkpoint. Mol Cell Biol 29: 4341–4351.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lahav G, Rosenfeld N, Sigal A, Geva-Zatorsky N, Levine AJ, Elowitz MB et al. (2004). Dynamics of the p53–Mdm2 feedback loop in individual cells. Nat Genet 36: 147–150.

    CAS  PubMed  Google Scholar 

  • Lam MH, Liu Q, Elledge SJ, Rosen JM . (2004). Chk1 is haploinsufficient for multiple functions critical to tumor suppression. Cancer Cell 6: 45–59.

    CAS  PubMed  Google Scholar 

  • Lara PN, Mack PC, Synold T, Frankel P, Longmate J, Gumerlock PH et al. (2005). The cyclin-dependent kinase inhibitor UCN-01 plus c--isplatin in advanced solid tumors: a California Cancer Consortium Phase I Pharmacokinetic and Molecular Correlative Trial. Clin Cancer Res 11: 4444–4450.

    CAS  PubMed  Google Scholar 

  • Le Guezennec X, Bulavin DV . (2010). WIP1 phosphatase at the crossroads of cancer and aging. Trends Biochem Sci 35: 109–114.

    CAS  PubMed  Google Scholar 

  • Lee J-H, Goodarzi AA, Jeggo PA, Paull TT . (2010). 53BP1 promotes ATM activity through direct interactions with the MRN complex. EMBO J 29: 574–585.

    CAS  PubMed  Google Scholar 

  • Lénárt P, Petronczki M, Steegmaier M, Di Fiore B, Lipp JJ, Hoffmann M et al. (2007). The small-molecule inhibitor BI 2536 reveals novel insights into mitotic roles of Polo-like kinase 1. Curr Biol 17: 304–315.

    PubMed  Google Scholar 

  • Leroy C, Lee S, Vaze M, Ochsenbien F, Guerois R, Haber J . (2003). PP2C phosphatases Ptc2 and Ptc3 are required for DNA checkpoint inactivation after a double-strand break. Mol Cell 11: 827–835.

    CAS  PubMed  Google Scholar 

  • Leung-Pineda V, Ryan C, Piwnica-Worms H . (2006). Phosphorylation of Chk1 by ATR is antagonized by a Chk1-regulated protein phosphatase 2A circuit. Mol Cell Biol 26: 7529–7538.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H-H, Cai X, Shouse GP, Piluso LG, Liu X . (2007). A specific PP2A regulatory subunit, B56[gamma], mediates DNA damage-induced dephosphorylation of p53 at Thr55. EMBO J 26: 402–411.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Yang Y, Peng Y, Austin RJ, van Eyndhoven WG, Nguyen KCQ et al. (2002). Oncogenic properties of PPM1D located within a breast cancer amplification epicenter at 17q23. Nat Genet 31: 133–134.

    CAS  PubMed  Google Scholar 

  • Lindqvist A, de B, Macurek L, Bras A, Mensinga A, Bruinsma W . (2009a). Wip1 confers G2 checkpoint recovery competence by counteracting p53-dependent transcriptional repression. EMBO J 28: 3196–3206.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindqvist A, Rodríguez-Bravo V, Medema RH . (2009b). The decision to enter mitosis: feedback and redundancy in the mitotic entry network. J Cell Biol 185: 193–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liontos M, Velimezi G, Pateras IS, Angelopoulou R, Papavassiliou AG, Bartek J et al. (2010). The roles of p27Kip1 and DNA damage signalling in the chemotherapy-induced delayed cell cycle checkpoint. J Cell Mol Med 14: 2264–2267.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Guntuku S, Cui X, Matsuoka S, Cortez D, Tamai K . (2000). Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 14: 1448–1459.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XS, Li H, Song B, Liu X . (2010). Polo-like kinase 1 phosphorylation of G2 and S-phase-expressed 1 protein is essential for p53 inactivation during G2 checkpoint recovery. EMBO Rep 11: 626–632.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lobjois V, Jullien D, Bouché J-P, Ducommun B . (2009). The polo-like kinase 1 regulates CDC25B-dependent mitosis entry. Biochim Biophys Acta 1793: 462–468.

    CAS  PubMed  Google Scholar 

  • Loewer A, Batchelor E, Gaglia G, Lahav G . (2010). Basal dynamics of p53 reveal transcriptionally attenuated pulses in cycling cells. Cell 142: 89–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Ma O, Nguyen T-A, Jones SN, Oren M, Donehower LA . (2007). The Wip1 phosphatase acts as a gatekeeper in the p53–Mdm2 autoregulatory loop. Cancer Cell 12: 342–354.

    CAS  PubMed  Google Scholar 

  • Lu X, Nannenga B, Donehower L . (2005). PPM1D dephosphorylates Chk1 and p53 and abrogates cell cycle checkpoints. Genes Dev 19: 1162–1174.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Nguyen T, Moon S, Darlington Y, Sommer M, Donehower L . (2008). The type 2C phosphatase Wip1: an oncogenic regulator of tumor suppressor and DNA damage response pathways. Cancer Metastasis Rev 27: 123–135.

    PubMed  PubMed Central  Google Scholar 

  • Ma CX, Janetka JW, Piwnica-Worms H . (2011). Death by releasing the breaks: CHK1 inhibitors as cancer therapeutics. Trends Mol Med 17: 88–96.

    CAS  PubMed  Google Scholar 

  • Macurek L, Lindqvist A, Lim D, Lampson MA, Klompmaker R, Freire R et al. (2008). Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery. Nature 455: 119–123.

    CAS  PubMed  Google Scholar 

  • Macurek L, Lindqvist A, Voets O, Kool J, Vos H, Medema R . (2010). Wip1 phosphatase is associated with chromatin and dephosphorylates gammaH2AX to promote checkpoint inhibition. Oncogene 29: 2281–2291.

    CAS  PubMed  Google Scholar 

  • Mailand N, Bekker-Jensen S, Bartek J, Lukas J . (2006). Destruction of claspin by SCF[beta]TrCP restrains Chk1 activation and facilitates recovery from genotoxic stress. Mol Cell 23: 307–318.

    CAS  PubMed  Google Scholar 

  • Mailand N, Falck J, Lukas C, Syljuåsen RG, Welcker M, Bartek J et al. (2000). Rapid destruction of human Cdc25A in response to DNA damage. Science 288: 1425–1429.

    CAS  PubMed  Google Scholar 

  • Mamely I, van Vugt MATM, Smits VAJ, Semple JI, Lemmens B, Perrakis A et al. (2006). Polo-like kinase-1 controls proteasome-dependent degradation of claspin during checkpoint recovery. Curr Biol 16: 1950–1955.

    CAS  PubMed  Google Scholar 

  • Manke IA, Nguyen A, Lim D, Stewart MQ, Elia AEH, Yaffe MB . (2005). MAPKAP kinase-2 is a cell cycle checkpoint kinase that regulates the G2/M transition and S phase progression in response to UV irradiation. Mol Cell 17: 37–48.

    CAS  PubMed  Google Scholar 

  • Matsuoka S, Ballif BA, Smogorzewska A, McDonald III ER, Hurov KE, Luo J et al. (2007). ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316: 1160–1166.

    CAS  PubMed  Google Scholar 

  • Maya-Mendoza A, Petermann E, Gillespie DAF, Caldecott KW, Jackson DA . (2007). Chk1 regulates the density of active replication origins during the vertebrate S phase. EMBO J 26: 2719–2731.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKenzie L, King S, Marcar L, Nicol S, Dias S, Schumm K et al. (2010). p53-dependent repression of polo-like kinase-1 (PLK1). Cell Cycle 9: 4200–4212.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Melixetian M, Klein DK, Sorensen CS, Helin K . (2009). NEK11 regulates CDC25A degradation and the IR-induced G2/M checkpoint. Nat Cell Biol 11: 1247–1253.

    CAS  PubMed  Google Scholar 

  • Menzel T, Nahse-Kumpf V, Kousholt AN, Klein DK, Lund-Andersen C, Lees M et al. (2011). A genetic screen identifies BRCA2 and PALB2 as key regulators of G2 checkpoint maintenance. EMBO Rep 12: 705–712.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mikhailov A, Shinohara M, Rieder CL . (2004). Topoisomerase II and histone deacetylase inhibitors delay the G2/M transition by triggering the p38 MAPK checkpoint pathway. J Cell Biol 166: 517–526.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moon S, Lin L, Zhang X, Nguyen T, Darlington Y, Waldman A . (2010). Wildtype p53-induced phosphatase 1 dephosphorylates histone variant {gamma}-H2AX and suppresses DNA double strand break repair. J Biol Chem 285: 12935–12947.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nannenga B, Lu X, Dumble M, Van Maanen M, Nguyen T-A, Sutton R et al. (2006). Augmented cancer resistance and DNA damage response phenotypes in PPM1D null mice. Mol Carcinog 45: 594–604.

    CAS  PubMed  Google Scholar 

  • O'Connell M, Raleigh J, Verkade H, Nurse P . (1997). Chk1 is a wee1 kinase in the G2 DNA damage checkpoint inhibiting cdc2 by Y15 phosphorylation. EMBO J 16: 545–554.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peddibhotla S, Lam MH, Gonzalez-Rimbau M, Rosen JM . (2009). The DNA-damage effector checkpoint kinase 1 is essential for chromosome segregation and cytokinesis. Proc Natl Acad Sci USA 106: 5159–5164.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pellegrini M, Celeste A, Difilippantonio S, Guo R, Wang W, Feigenbaum L . (2006). Autophosphorylation at serine 1987 is dispensable for murine Atm activation in vivo. Nature 443: 222–225.

    CAS  PubMed  Google Scholar 

  • Peng A, Lewellyn AL, Schiemann WP, Maller JL . (2010). Repo-Man controls a protein phosphatase 1-dependent rhreshold for DNA damage checkpoint activation. Curr Biol 20: 387–396.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng C-Y, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H . (1997). Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277: 1501–1505.

    CAS  PubMed  Google Scholar 

  • Peschiaroli A, Dorrello NV, Guardavaccaro D, Venere M, Halazonetis T, Sherman NE et al. (2006). SCF[beta]TrCP-mediated degradation of claspin regulates recovery from the DNA replication checkpoint response. Mol Cell 23: 319–329.

    CAS  PubMed  Google Scholar 

  • Phong MS, Van Horn RD, Li S, Tucker-Kellogg G, Surana U, Ye XS . (2010). p38 mitogen-activated protein kinase promotes cell survival in response to DNA damage but is not required for the G2 DNA damage checkpoint in human cancer cells. Mol Cell Biol 30: 3816–3826.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Polo SE, Jackson SP . (2011). Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev 25: 409–433.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rajeshkumar NV, De Oliveira E, Ottenhof N, Watters J, Brooks D, Demuth T et al. (2011). MK-1775, a potent Wee1 inhibitor, synergizes with gemcitabine to achieve tumor regressions, selectively in p53-deficient pancreatic cancer xenografts. Clin Cancer Res 17: 2799–2806.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raman M, Earnest S, Zhang K, Zhao Y, Cobb MH . (2007). TAO kinases mediate activation of p38 in response to DNA damage. EMBO J 26: 2005–2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rayter S, Elliott R, Travers J, Rowlands MG, Richardson TB, Boxall K et al. (2008). A chemical inhibitor of PPM1D that selectively kills cells overexpressing PPM1D. Oncogene 27: 1036–1044.

    CAS  PubMed  Google Scholar 

  • Reinhardt HC, Aslanian AS, Lees JA, Yaffe MB . (2007). p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer Cell 11: 175–189.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhardt HC, Hasskamp P, Schmedding I, Morandell S, van Vugt MATM, Wang X et al. (2010). DNA damage activates a spatially distinct late cytoplasmic cell-cycle checkpoint network controlled by MK2-mediated RNA stabilization. Mol Cell 40: 34–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saito-Ohara F, Imoto I, Inoue J, Hosoi H, Nakagawara A, Sugimoto T et al. (2003). PPM1D is a potential target for 17q gain in neuroblastoma. Cancer Res 63: 1876–1883.

    CAS  PubMed  Google Scholar 

  • Sanchez Y, Wong C, Thoma RS, Richman R, Wu Z, Piwnica-Worms H et al. (1997). Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277: 1497–1501.

    CAS  PubMed  Google Scholar 

  • Santra MK, Wajapeyee N, Green MR . (2009). F-box protein FBXO31 mediates cyclin D1 degradation to induce G1 arrest after DNA damage. Nature 459: 722–725.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sartori AA, Lukas C, Coates J, Mistrik M, Fu S, Bartek J et al. (2007). Human CtIP promotes DNA end resection. Nature 450: 509–514.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh N, Maniwa Y, Bermudez VP, Nishimura K, Nishio W, Yoshimura M et al. (2011). Oncogenic phosphatase Wip1 is a novel prognostic marker for lung adenocarcinoma patient survival. Cancer Sci 102: 1101–1106.

    CAS  PubMed  Google Scholar 

  • Secchiero P, Bosco R, Celeghini C, Zauli G . (2011). Recent advances in the therapeutic perspectives of nutlin-3. Curr Pharm Des 17: 569–577.

    CAS  PubMed  Google Scholar 

  • Seki A, Coppinger JA, Jang C-Y, Yates JR, Fang G . (2008). Bora and the kinase aurora A cooperatively activate the kinase Plk1 and control mitotic entry. Science 320: 1655–1658.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shangary S, Qin D, McEachern D, Liu M, Miller RS, Qiu S et al. (2008). Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci USA 105: 3933–3938.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen H, Maki C . (2011). Pharmacologic activation of p53 by small-molecule MDM2 antagonists. Curr Pharm Des 17: 560–568.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shibata A, Barton O, Noon AT, Dahm K, Deckbar D, Goodarzi AA et al. (2010). Role of ATM and the damage response mediator proteins 53BP1 and MDC1 in the maintenance of G2/M checkpoint arrest. Mol Cell Biol 30: 3371–3383.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shouse GP, Nobumori Y, Panowicz MJ, Liu X . (2011). ATM-mediated phosphorylation activates the tumor-suppressive function of B56[gamma]-PP2A. Oncogene 30: 3755–3765.

    CAS  PubMed  Google Scholar 

  • Shreeram S, Demidov O, Hee W, Yamaguchi H, Onishi N, Kek C . (2006a). Wip1 phosphatase modulates ATM-dependent signaling pathways. Mol Cell 23: 757–764.

    CAS  PubMed  Google Scholar 

  • Shreeram S, Hee WK, Demidov ON, Kek C, Yamaguchi H, Fornace Jr AJ. et al. (2006b). Regulation of ATM/p53-dependent suppression of myc-induced lymphomas by Wip1 phosphatase. J Exp Med 203: 2793–2799.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smits VAJ, Klompmaker R, Arnaud L, Rijksen G, Nigg EA, Medema RH . (2000). Polo-like kinase-1 is a target of the DNA damage checkpoint. Nat Cell Biol 2: 672–676.

    CAS  PubMed  Google Scholar 

  • Smits VAJ, Reaper PM, Jackson SP . (2006). Rapid PIKK-dependent release of Chk1 from chromatin promotes the DNA-damage checkpoint response. Curr Biol 16: 150–159.

    CAS  PubMed  Google Scholar 

  • Stevens C, Smith L, La Thangue N . (2003). Chk2 activates E2F-1 in response to DNA damage. Nat Cell Biol 5: 401–409.

    CAS  PubMed  Google Scholar 

  • Stucki M, Clapperton J, Mohammad D, Yaffe M, Smerdon S, Jackson S . (2005). MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 123: 1213–1226.

    CAS  PubMed  Google Scholar 

  • Sun Y, Jiang X, Chen S, Fernandes N, Price BD . (2005). A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc Natl Acad Sci USA 102: 13182–13187.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Jiang X, Xu Y, Ayrapetov MK, Moreau LA, Whetstine JR et al. (2009). Histone H3 methylation links DNA damage detection to activation of the tumour suppressor Tip60. Nat Cell Biol 11: 1376–1382.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Xu Y, Roy K, Price BD . (2007). DNA Damage-Induced Acetylation of Lysine 3016 of ATM Activates ATM Kinase Activity. Mol Cell Biol 27: 8502–8509.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Syljuasen RG, Sorensen CS, Hansen LT, Fugger K, Lundin C, Johansson F et al. (2005). Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage. Mol Cell Biol 25: 3553–3562.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takai H, Naka K, Okada Y, Watanabe M, Harada N, Saito S . (2002). Chk2-deficient mice exhibit radioresistance and defective p53-mediated transcription. EMBO J 21: 5195–5205.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takai H, Tominaga K, Motoyama N, Minamishima Y, Nagahama H, Tsukiyama T . (2000). Aberrant cell cycle checkpoint function and early embryonic death in Chk1(−/−) mice. Genes Dev 14: 1439–1447.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takekawa M, Adachi M, Nakahata A, Nakayama I, Itoh F, Tsukuda H et al. (2000). p53-inducible Wip1 phosphatase mediates a negative feedback regulation of p38 MAPK–p53 signaling in response to UV radiation. EMBO J 19: 6517–6526.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan DSP, Iravani M, McCluggage WG, Lambros MBK, Milanezi F, Mackay A et al. (2011). Genomic analysis reveals the molecular heterogeneity of ovarian clear cell carcinomas. Clin Cancer Res 17: 1521–1534.

    CAS  PubMed  Google Scholar 

  • Tan DSP, Lambros MBK, Rayter S, Natrajan R, Vatcheva R, Gao Q et al. (2009). PPM1D is a potential therapeutic target in ovarian clear cell carcinomas. Clin Cancer Res 15: 2269–2280.

    CAS  PubMed  Google Scholar 

  • Toczyski DP, Galgoczy DJ, Hartwell LH . (1997). CDC5 and CKII control adaptation to the yeast DNA damage checkpoint. Cell 90: 1097–1106.

    CAS  PubMed  Google Scholar 

  • Toyoshima-Morimoto F, Taniguchi E, Nishida E . (2002). Plk1 promotes nuclear translocation of human Cdc25C during prophase. EMBO Rep 3: 341–348.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsvetkov L, Stern D . (2005). Phosphorylation of Plk1 at S137 and T210 is inhibited in response to DNA damage. Cell Cycle 4: 166–171.

    CAS  PubMed  Google Scholar 

  • van Vugt MATM, Brás A, Medema RH . (2004). Polo-like kinase-1 controls recovery from a G2 DNA damage-induced arrest in mammalian cells. Mol Cell 15: 799–811.

    CAS  PubMed  Google Scholar 

  • van Vugt MATM, Gardino AK, Linding R, Ostheimer GJ, Reinhardt HC, Ong S-E et al. (2010). A mitotic phosphorylation feedback network connects Cdk1, Plk1, 53BP1, and Chk2 to inactivate the G2/M DNA damage checkpoint. PLoS Biol 8: e1000287.

    PubMed  PubMed Central  Google Scholar 

  • Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al. (2004). In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303: 844–848.

    CAS  PubMed  Google Scholar 

  • Wang P, Rao J, Yang H, Zhao H, Yang L . (2011). PPM1D silencing by lentiviral-mediated RNA interference inhibits proliferation and invasion of human glioma cells. J Huazhong Univ Sci Technolog Med Sci 31: 94–99.

    PubMed  Google Scholar 

  • Wang Q, Fan S, Eastman A, Worland PJ, Sausville EA, O′Connor PM . (1996). UCN-01: a potent abrogator of G2 checkpoint function in cancer cells with disrupted p53. J Natl Cancer Inst 88: 956–965.

    CAS  PubMed  Google Scholar 

  • Wang XW, Zhan Q, Coursen JD, Khan MA, Kontny HU, Yu L et al. (1999). GADD45 induction of a G2/M cell cycle checkpoint. Proc Natl Acad Sci USA 96: 3706–3711.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Li J, Booher RN, Kraker A, Lawrence T, Leopold WR et al. (2001). Radiosensitization of p53 mutant cells by PD0166285, a novel G2 checkpoint abrogator. Cancer Res 61: 8211–8217.

    CAS  PubMed  Google Scholar 

  • Watanabe N, Arai H, Nishihara Y, Taniguchi M, Watanabe N, Hunter T et al. (2004). M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFÎ2–TrCP. Proc Natl Acad Sci USA 101: 4419–4424.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilsker D, Petermann E, Helleday T, Bunz F . (2008). Essential function of Chk1 can be uncoupled from DNA damage checkpoint and replication control. Proc Natl Acad Sci USA 105: 20752–20757.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Z, Chen Z, Gunasekera AH, Sowin TJ, Rosenberg SH, Fesik S et al. (2003). Chk1 mediates S and G2 arrests through Cdc25A degradation in response to DNA-damaging agents. J Biol Chem 278: 21767–21773.

    CAS  PubMed  Google Scholar 

  • Yamaguchi H, Durell SR, Chatterjee DK, Anderson CW, Appella E . (2007). The Wip1 phosphatase PPM1D dephosphorylates SQ/TQ motifs in checkpoint substrates phosphorylated by PI3K-like kinases. Biochemistry 46: 12594–12603.

    CAS  PubMed  Google Scholar 

  • Yamaguchi H, Durell SR, Feng H, Bai Y, Anderson CW, Appella E . (2006). Development of a substrate-based cyclic phosphopeptide inhibitor of protein phosphatase 2Cδ, Wip1. Biochemistry 45: 13193–13202.

    CAS  PubMed  Google Scholar 

  • Zachos G, Black EJ, Walker M, Scott MT, Vagnarelli P, Earnshaw WC et al. (2007). Chk1 is required for spindle checkpoint function. Dev Cell 12: 247–260.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan Q, Antinore MJ, Wang XW, Carrier F, Smith ML, Harris CC et al. (1999). Association with Cdc2 and inhibition of Cdc2/cyclin B1 kinase activity by the p53-regulated protein Gadd45. Oncogene 18: 2892–2900.

    CAS  PubMed  Google Scholar 

  • Zhang X, Lin L, Guo H, Yang J, Jones SN, Jochemsen A et al. (2009). Phosphorylation and degradation of MdmX is inhibited by Wip1 phosphatase in the DNA damage response. Cancer Res 69: 7960–7968.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Wan G, Mlotshwa S, Vance V, Berger FG, Chen H et al. (2010). Oncogenic Wip1 phosphatase is inhibited by miR-16 in the DNA damage signaling pathway. Cancer Res 70: 7176–7186.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Watkins JL, Piwnica-Worms H . (2002). Disruption of the checkpoint kinase 1/cell division cycle 25A pathway abrogates ionizing radiation-induced S and G2 checkpoints. Proc Natl Acad Sci USA 99: 14795–14800.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou B-BS, Bartek J . (2004). Targeting the checkpoint kinases: chemosensitization versus chemoprotection. Nat Rev Cancer 4: 216–225.

    CAS  PubMed  Google Scholar 

  • Zou L, Elledge SJ . (2003). Sensing DNA damage through ATRIP recognition of RPA–ssDNA complexes. Science 300: 1542–1548.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

RHM was funded by the Netherlands Genomics Initiative of the Netherlands Organization for Scientific Research and by the Dutch Cancer Society (Grant UU2009-4478). LM was supported by the Grant Agency of the Czech Republic (P301/10/1525 and P305/10/P420).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Macůrek.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medema, R., Macůrek, L. Checkpoint control and cancer. Oncogene 31, 2601–2613 (2012). https://doi.org/10.1038/onc.2011.451

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.451

Keywords

This article is cited by

Search

Quick links