Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

GATA3 inhibits lysyl oxidase-mediated metastases of human basal triple-negative breast cancer cells

Abstract

Discovery of mechanisms that impede the aggressive and metastatic phenotype of human basal triple-negative-type breast cancers (BTNBCs) could provide novel targets for therapy for this form of breast cancer that has a relatively poor prognosis. Previous studies have demonstrated that expression of GATA3, the master transcriptional regulator of mammary luminal differentiation, can reduce the tumorigenicity and metastatic propensity of the human BTNBC MDA-MB-231 cell line (MB231), although the mechanism for reduced metastases was not elucidated. We demonstrate through gene expression profiling that GATA3 expression in 231 cells resulted in the dramatic reduction in the expression of lysyl oxidase (LOX), a metastasis-promoting, matrix-remodeling protein, in part, through methylation of the LOX promoter. Suppression of LOX expression by GATA3 was further confirmed in the BTNBC Hs578T cell line. Conversely, reduction of GATA3 expression by small interfering RNA in luminal BT474 cells increased LOX expression. Reconstitution of LOX expression in 231-GATA3 cells restored metastatic propensity. A strong inverse association between LOX and GATA3 expression was confirmed in a panel of 51 human breast cancer cell lines. Similarly, human breast cancer microarray data demonstrated that high LOX/low GATA3 expression is associated with the BTNBC subtype of breast cancer and poor patient prognosis. Expression of GATA3 reprograms BTNBCs to a less aggressive phenotype and inhibits a major mechanism of metastasis through inhibition of LOX. Induction of GATA3 in BTNBC cells or novel approaches that inhibit LOX expression or activity could be important strategies for treating BTNBCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abourbih DA, Di CS, Orellana ME, Antecka E, Martins C, Petruccelli LA et al. (2010). Lysyl oxidase expression and inhibition in uveal melanoma. Melanoma Res 20: 97–106.

    Article  CAS  PubMed  Google Scholar 

  • Asselin-Labat ML, Sutherland KD, Barker H, Thomas R, Shackleton M, Forrest NC et al. (2007). Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol 9: 201–209.

    Article  CAS  PubMed  Google Scholar 

  • Barkan D, El Touny LH, Michalowski AM, Smith JA, Chu I, Davis AS et al. (2010). Metastatic growth from dormant cells induced by a col-I-enriched fibrotic environment. Cancer Res 70: 5706–5716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barkan D, Kleinman H, Simmons JL, Asmussen H, Kamaraju AK, Hoenorhoff MJ et al. (2008). Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Res 68: 6241–6250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bondareva A, Downey CM, Ayres F, Liu W, Boyd SK, Hallgrimsson B et al. (2009). The lysyl oxidase inhibitor, beta-aminopropionitrile, diminishes the metastatic colonization potential of circulating breast cancer cells. PLoS One 4: e5620–e562.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chu I, Blackwell K, Chen S, Slingerland J . (2005). The dual ErbB1/ErbB2 inhibitor, lapatinib (GW572016), cooperates with tamoxifen to inhibit both cell proliferation- and estrogen-dependent gene expression in antiestrogen-resistant breast cancer. Cancer Res 65: 18–25.

    CAS  PubMed  Google Scholar 

  • Condeelis J, Pollard JW . (2006). Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124: 263–266.

    Article  CAS  PubMed  Google Scholar 

  • Dydensborg AB, Rose AA, Wilson BJ, Grote D, Paquet M, Giguere V et al. (2009). GATA3 inhibits breast cancer growth and pulmonary breast cancer metastasis. Oncogene 28: 2634–2642.

    Article  CAS  PubMed  Google Scholar 

  • Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A et al. (2009). Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15: 35–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erler JT, Bennewith KL, Nicolau M, Dornhofer N, Kong C, Le QT et al. (2006). Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440: 1222–1226.

    Article  CAS  PubMed  Google Scholar 

  • Grimsby JL, Lucero HA, Trackman PC, Ravid K, Kagan HM . (2010). Role of lysyl oxidase propeptide in secretion and enzyme activity. J Cell Biochem 111: 1231–1243.

    Article  CAS  PubMed  Google Scholar 

  • Gupta GP, Massague J . (2006). Cancer metastasis: building a framework. Cell 127: 679–695.

    Article  CAS  PubMed  Google Scholar 

  • Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K, Gilcrease MZ, Krishnamurthy S, Lee JS et al. (2009). Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res 69: 4116–4124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoenerhoff MJ, Chu I, Barkan D, Liu ZY, Datta S, Dimri GP et al. (2009). BMI1 cooperates with H-RAS to induce an aggressive breast cancer phenotype with brain metastases. Oncogene 28: 3022–3032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kagan HM, Li W . (2003). Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell. J Cell Biochem 88: 660–672.

    Article  CAS  PubMed  Google Scholar 

  • Kaneda A, Wakazono K, Tsukamoto T, Watanabe N, Yagi Y, Tatematsu M et al. (2004). Lysyl oxidase is a tumor suppressor gene inactivated by methylation and loss of heterozygosity in human gastric cancers. Cancer Res 64: 6410–6415.

    Article  CAS  PubMed  Google Scholar 

  • Kouros-Mehr H, Bechis SK, Slorach EM, Littlepage LE, Egeblad M, Ewald AJ et al. (2008). GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell 13: 141–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouros-Mehr H, Slorach EM, Sternlicht MD, Werb Z . (2006a). GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell 127: 1041–1055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouros-Mehr H, Werb Z . (2006b). Candidate regulators of mammary branching morphogenesis identified by genome-wide transcript analysis. Dev Dyn 235: 3404–3412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT et al. (2009). Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139: 891–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD et al. (2005). Genes that mediate breast cancer metastasis to lung. Nature 436: 518–524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T et al. (2006). A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10: 515–527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palamakumbura AH, Trackman PC . (2002). A fluorometric assay for detection of lysyl oxidase enzyme activity in biological samples. Anal Biochem 300: 245–251.

    Article  CAS  PubMed  Google Scholar 

  • Palamakumbura AH, Vora SR, Nugent MA, Kirsch KH, Sonenshein GE, Trackman PC . (2009). Lysyl oxidase propeptide inhibits prostate cancer cell growth by mechanisms that target FGF-2-cell binding and signaling. Oncogene 28: 3390–3400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payne SL, Fogelgren B, Hess AR, Seftor EA, Wiley EL, Fong SF et al. (2005). Lysyl oxidase regulates breast cancer cell migration and adhesion through a hydrogen peroxide-mediated mechanism. Cancer Res 65: 11429–11436.

    Article  CAS  PubMed  Google Scholar 

  • Payne SL, Hendrix MJ, Kirschmann DA . (2007). Paradoxical roles for lysyl oxidases in cancer—a prospect. J Cell Biochem 101: 1338–1354.

    Article  CAS  PubMed  Google Scholar 

  • Perou CM, Sorlie T, Eisen MB, van de RM, Jeffrey SS, Rees CA et al. (2000). Molecular portraits of human breast tumours. Nature 406: 747–752.

    Article  CAS  PubMed  Google Scholar 

  • Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A et al. (2003). Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100: 8418–8423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usary J, Llaca V, Karaca G, Presswala S, Karaca M, He X et al. (2004). Mutation of GATA3 in human breast tumors. Oncogene 23: 7669–7678.

    Article  CAS  PubMed  Google Scholar 

  • van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW et al. (2002). A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347: 1999–2009.

    Article  CAS  PubMed  Google Scholar 

  • van't Veer LJ, Dai H, van d V, He YD, Hart AA, Mao M et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature 415: 530–536.

    Article  CAS  Google Scholar 

  • Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F et al. (2005). Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365: 671–679.

    Article  CAS  PubMed  Google Scholar 

  • Yan W, Cao QJ, Arenas RB, Bentley B, Shao R . (2010). GATA3 inhibits breast cancer metastasis through the reversal of epithelial–mesenchymal transition. J Biol Chem 285: 14042–14051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou M, Ouyang W . (2003). The function role of GATA-3 in Th1 and Th2 differentiation. Immunol Res 28: 25–37.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs Lalage Wakefield and Li Yang for helpful scientific discussions. We also thank Lara El-Touny, Dalit Barkan, Zi-Yao Liu, TingHu Qiu, Anthony Vieira, Christina Bennett, Christine Tomlinson, Steven Austin, Christian Mustroph and Wei-Chu Lai for technical assistance; Paul Meltzer for sharing unpublished data; the LRBGE Fluorescence Imaging Core and Chand Khanna for the use of fluorescence microscopy equipment; and Julie Foley and Norris Flagler for technical assistance with image analysis. This research was supported in part by the Intramural Research Program, Center for Cancer Research, NCI, NIH. IMC acknowledges support from the Department of Defense Breast Cancer Research Program (W81XWH-10-2-0030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J E Green.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, I., Michalowski, A., Hoenerhoff, M. et al. GATA3 inhibits lysyl oxidase-mediated metastases of human basal triple-negative breast cancer cells. Oncogene 31, 2017–2027 (2012). https://doi.org/10.1038/onc.2011.382

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.382

Keywords

This article is cited by

Search

Quick links