Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Peroxisome proliferator-activated receptor δ confers resistance to peroxisome proliferator-activated receptor γ-induced apoptosis in colorectal cancer cells

Abstract

Peroxisome proliferator-activated receptor γ (PPARγ) may serve as a useful target for drug development in non-diabetic diseases. However, some colorectal cancer cells are resistant to PPARγ agonists by mechanisms that are poorly understood. Here, we provide the first evidence that elevated PPARδ expression and/or activation of PPARδ antagonize the ability of PPARγ to induce colorectal carcinoma cell death. More importantly, the opposing effects of PPARδ and PPARγ in regulating programmed cell death are mediated by survivin and caspase-3. We found that activation of PPARγ results in decreased survivin expression and increased caspase-3 activity, whereas activation of PPARδ counteracts these effects. Our findings suggest that PPARδ and PPARγ coordinately regulate cancer cell fate by controlling the balance between the cell death and survival and demonstrate that inhibition of PPARδ can reprogram PPARγ ligand-resistant cells to respond to PPARγ agonists.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Altieri DC . (2003). Validating survivin as a cancer therapeutic target. Nat Rev Cancer 3: 46–54.

    Article  CAS  Google Scholar 

  • Asanuma K, Moriai R, Yajima T, Yagihashi A, Yamada M, Kobayashi D et al. (2000). Survivin as a radioresistance factor in pancreatic cancer. Jpn J Cancer Res 91: 1204–1209.

    Article  CAS  Google Scholar 

  • Burstein HJ, Demetri GD, Mueller E, Sarraf P, Spiegelman BM, Winer EP . (2003). Use of the peroxisome proliferator-activated receptor (PPAR) gamma ligand troglitazone as treatment for refractory breast cancer: a phase II study. Breast Cancer Res Treat 79: 391–397.

    Article  CAS  Google Scholar 

  • Cellai I, Benvenuti S, Luciani P, Galli A, Ceni E, Simi L et al. (2006). Antineoplastic effects of rosiglitazone and PPARgamma transactivation in neuroblastoma cells. Br J Cancer 95: 879–888.

    Article  CAS  Google Scholar 

  • Di-Poi N, Michalik L, Tan NS, Desvergne B, Wahli W . (2003). The anti-apoptotic role of PPARbeta contributes to efficient skin wound healing. J Steroid Biochem Mol Biol 85: 257–265.

    Article  CAS  Google Scholar 

  • Di-Poi N, Tan NS, Michalik L, Wahli W, Desvergne B . (2002). Antiapoptotic role of PPARbeta in keratinocytes via transcriptional control of the Akt1 signaling pathway. Mol Cell 10: 721–733.

    Article  CAS  Google Scholar 

  • Farrow B, Evers BM . (2003). Activation of PPARgamma increases PTEN expression in pancreatic cancer cells. Biochem Biophys Res Commun 301: 50–53.

    Article  CAS  Google Scholar 

  • Fukuda S, Foster RG, Porter SB, Pelus LM . (2002). The antiapoptosis protein survivin is associated with cell cycle entry of normal cord blood CD34(+) cells and modulates cell cycle and proliferation of mouse hematopoietic progenitor cells. Blood 100: 2463–2471.

    Article  CAS  Google Scholar 

  • Girnun GD, Smith WM, Drori S, Sarraf P, Mueller E, Eng C et al. (2002). APC-dependent suppression of colon carcinogenesis by PPARgamma. Proc Natl Acad Sci USA 99: 13771–13776.

    Article  CAS  Google Scholar 

  • Gupta RA, Brockman JA, Sarraf P, Willson TM, DuBois RN . (2001). Target genes of peroxisome proliferator-activated receptor gamma in colorectal cancer cells. J Biol Chem 276: 29681–29687.

    Article  CAS  Google Scholar 

  • Gupta RA, Wang D, Katkuri S, Wang H, Dey SK, DuBois RN . (2004). Activation of nuclear hormone receptor peroxisome proliferator-activated receptor-delta accelerates intestinal adenoma growth. Nat Med 10: 245–247.

    Article  CAS  Google Scholar 

  • Han S, Roman J . (2006). Rosiglitazone suppresses human lung carcinoma cell growth through PPARgamma-dependent and PPARgamma-independent signal pathways. Mol Cancer Ther 5: 430–437.

    Article  CAS  Google Scholar 

  • Hao CM, Redha R, Morrow J, Breyer MD . (2002). Peroxisome proliferator-activated receptor delta activation promotes cell survival following hypertonic stress. J Biol Chem 277: 21341–21345.

    Article  CAS  Google Scholar 

  • Harman FS, Nicol CJ, Marin HE, Ward JM, Gonzalez FJ, Peters JM . (2004). Peroxisome proliferator-activated receptor-delta attenuates colon carcinogenesis. Nat Med 10: 481–483.

    Article  CAS  Google Scholar 

  • He TC, Chan TA, Vogelstein B, Kinzler KW . (1999). PPARdelta is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell 99: 335–345.

    Article  CAS  Google Scholar 

  • Hoffman WH, Biade S, Zilfou JT, Chen J, Murphy M . (2002). Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J Biol Chem 277: 3247–3257.

    Article  CAS  Google Scholar 

  • Kato Y, Ying H, Zhao L, Furuya F, Araki O, Willingham MC et al. (2006). PPARgamma insufficiency promotes follicular thyroid carcinogenesis via activation of the nuclear factor-kappaB signaling pathway. Oncogene 25: 2736–2747.

    Article  CAS  Google Scholar 

  • Kawasaki H, Altieri DC, Lu CD, Toyoda M, Tenjo T, Tanigawa N . (1998). Inhibition of apoptosis by survivin predicts shorter survival rates in colorectal cancer. Cancer Res 58: 5071–5074.

    CAS  PubMed  Google Scholar 

  • Kim EJ, Park KS, Chung SY, Sheen YY, Moon DC, Song YS et al. (2003). Peroxisome proliferator-activated receptor-gamma activator 15-deoxy-Delta12,14-prostaglandin J2 inhibits neuroblastoma cell growth through induction of apoptosis: association with extracellular signal-regulated kinase signal pathway. J Pharmacol Exp Ther 307: 505–517.

    Article  CAS  Google Scholar 

  • Kulke MH, Demetri GD, Sharpless NE, Ryan DP, Shivdasani R, Clark JS et al. (2002). A phase II study of troglitazone, an activator of the PPARgamma receptor, in patients with chemotherapy-resistant metastatic colorectal cancer. Cancer J 8: 395–399.

    Article  Google Scholar 

  • Kuo PC, Liu HF, Chao JI . (2004). Survivin and p53 modulate quercetin-induced cell growth inhibition and apoptosis in human lung carcinoma cells. J Biol Chem 279: 55875–55885.

    Article  CAS  Google Scholar 

  • Lefebvre AM, Chen I, Desreumaux P, Najib J, Fruchart JC, Geboes K et al. (1998). Activation of the peroxisome proliferator-activated receptor gamma promotes the development of colon tumors in C57BL/6J-APCMin/+ mice. Nat Med 4: 1053–1057.

    Article  CAS  Google Scholar 

  • Li M, Lee TW, Mok TS, Warner TD, Yim AP, Chen GG . (2005). Activation of peroxisome proliferator-activated receptor-gamma by troglitazone (TGZ) inhibits human lung cell growth. J Cell Biochem 96: 760–774.

    Article  CAS  Google Scholar 

  • Nadra K, Anghel SI, Joye E, Tan NS, Basu-Modak S, Trono D et al. (2006). Differentiation of trophoblast giant cells and their metabolic functions are dependent on peroxisome proliferator-activated receptor beta/delta. Mol Cell Biol 26: 3266–3281.

    Article  CAS  Google Scholar 

  • O'Connor DS, Wall NR, Porter AC, Altieri DC . (2002). A p34(cdc2) survival checkpoint in cancer. Cancer Cell 2: 43–54.

    Article  CAS  Google Scholar 

  • Olie RA, Simoes-Wust AP, Baumann B, Leech SH, Fabbro D, Stahel RA et al. (2000). A novel antisense oligonucleotide targeting survivin expression induces apoptosis and sensitizes lung cancer cells to chemotherapy. Cancer Res 60: 2805–2809.

    CAS  Google Scholar 

  • Osawa E, Nakajima A, Wada K, Ishimine S, Fujisawa N, Kawamori T et al. (2003). Peroxisome proliferator-activated receptor gamma ligands suppress colon carcinogenesis induced by azoxymethane in mice. Gastroenterology 124: 361–367.

    Article  CAS  Google Scholar 

  • Panigrahy D, Huang S, Kieran MW, Kaipainen A . (2005). PPARgamma as a therapeutic target for tumor angiogenesis and metastasis. Cancer Biol Ther 4: 687–693.

    Article  CAS  Google Scholar 

  • Park BH, Vogelstein B, Kinzler KW . (2001). Genetic disruption of PPARdelta decreases the tumorigenicity of human colon cancer cells. Proc Natl Acad Sci USA 98: 2598–2603.

    Article  CAS  Google Scholar 

  • Peters JM, Lee SS, Li W, Ward JM, Gavrilova O, Everett C et al. (2000). Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor beta(delta). Mol Cell Biol 20: 5119–5128.

    Article  CAS  Google Scholar 

  • Pino MV, Kelley MF, Jayyosi Z . (2004). Promotion of colon tumors in C57BL/6J-APC(min)/+ mice by thiazolidinedione PPARgamma agonists and a structurally unrelated PPARgamma agonist. Toxicol Pathol 32: 58–63.

    Article  CAS  Google Scholar 

  • Saez E, Tontonoz P, Nelson MC, Alvarez JG, Ming UT, Baird SM et al. (1998). Activators of the nuclear receptor PPARgamma enhance colon polyp formation. Nat Med 4: 1058–1061.

    Article  CAS  Google Scholar 

  • Salvesen GS, Duckett CS . (2002). IAP proteins: blocking the road to death's door. Nat Rev Mol Cell Biol 3: 401–410.

    Article  CAS  Google Scholar 

  • Sarela AI, Scott N, Ramsdale J, Markham AF, Guillou PJ . (2001). Immunohistochemical detection of the anti-apoptosis protein, survivin, predicts survival after curative resection of stage II colorectal carcinomas. Ann Surg Oncol 8: 305–310.

    Article  CAS  Google Scholar 

  • Sarraf P, Mueller E, Jones D, King FJ, DeAngelo DJ, Partridge JB et al. (1998). Differentiation and reversal of malignant changes in colon cancer through PPARgamma. Nat Med 4: 1046–1052.

    Article  CAS  Google Scholar 

  • Takayama O, Yamamoto H, Damdinsuren B, Sugita Y, Ngan CY, Xu X et al. (2006). Expression of PPARdelta in multistage carcinogenesis of the colorectum: implications of malignant cancer morphology. Br J Cancer 95: 889–895.

    Article  CAS  Google Scholar 

  • Teresi RE, Shaiu CW, Chen CS, Chatterjee VK, Waite KA, Eng C . (2006). Increased PTEN expression due to transcriptional activation of PPARgamma by Lovastatin and Rosiglitazone. Int J Cancer 118: 2390–2398.

    Article  CAS  Google Scholar 

  • Ueda Y, Wang S, Dumont N, Yi JY, Koh Y, Arteaga CL . (2004). Overexpression of HER2 (erbB2) in human breast epithelial cells unmasks transforming growth factor beta-induced cell motility. J Biol Chem 279: 24505–24513.

    Article  CAS  Google Scholar 

  • Wang D, Buchanan FG, Wang H, Dey SK, DuBois RN . (2005). Prostaglandin E2 enhances intestinal adenoma growth via activation of the Ras-mitogen-activated protein kinase cascade. Cancer Res 65: 1822–1829.

    Article  CAS  Google Scholar 

  • Wang D, Wang H, Brown J, Daikoku T, Ning W, Shi Q et al. (2006a). CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer. J Exp Med 203: 941–951.

    Article  CAS  Google Scholar 

  • Wang D, Wang H, Guo Y, Ning W, Katkuri S, Wahli W et al. (2006b). Crosstalk between peroxisome proliferator-activated receptor delta and VEGF stimulates cancer progression. Proc Natl Acad Sci USA 103: 19069–19074.

    Article  CAS  Google Scholar 

  • Wang D, Wang H, Shi Q, Katkuri S, Walhi W, Desvergne B et al. (2004). Prostaglandin E(2) promotes colorectal adenoma growth via transactivation of the nuclear peroxisome proliferator-activated receptor delta. Cancer Cell 6: 285–295.

    Article  CAS  Google Scholar 

  • Williams CW, Luongo C, Radhika A, Zhang T, Lamps LW, Nanney LB et al. (1996). Elevated cyclooxygenase-2 levels in Min mouse adenomas. Gastroenterology 111: 1134–1140.

    Article  CAS  Google Scholar 

  • Yin Y, Russell RG, Dettin LE, Bai R, Wei ZL, Kozikowski AP et al. (2005). Peroxisome proliferator-activated receptor delta and gamma agonists differentially alter tumor differentiation and progression during mammary carcinogenesis. Cancer Res 65: 3950–3957.

    Article  CAS  Google Scholar 

  • Zaffaroni N, Daidone MG . (2002). Survivin expression and resistance to anticancer treatments: perspectives for new therapeutic interventions. Drug Resist Updat 5: 65–72.

    Article  CAS  Google Scholar 

  • Zhang T, Otevrel T, Gao Z, Gao Z, Ehrlich SM, Fields JZ et al. (2001). Evidence that APC regulates survivin expression: a possible mechanism contributing to the stem cell origin of colon cancer. Cancer Res 61: 8664–8667.

    CAS  Google Scholar 

  • Zhao J, Tenev T, Martins LM, Downward J, Lemoine NR . (2000). The ubiquitin-proteasome pathway regulates survivin degradation in a cell cycle-dependent manner. J Cell Sci 113 (Part 23): 4363–4371.

    CAS  Google Scholar 

  • Zuo X, Peng Z, Moussalli MJ, Morris JS, Broaddus RR, Fischer SM et al. (2009). Targeted genetic disruption of peroxisome proliferator-activated receptor-delta and colonic tumorigenesis. J Natl Cancer Inst 101: 762–767.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Colorectal Cancer Research Alliance (NCCRA) for its generous support (RND). This work is supported, in part, by the NIH MERIT award R37 DK47297, RO1 DK 62112, NCI P01 CA77839 and CPRIT RP100960.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R N DuBois.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D., Ning, W., Xie, D. et al. Peroxisome proliferator-activated receptor δ confers resistance to peroxisome proliferator-activated receptor γ-induced apoptosis in colorectal cancer cells. Oncogene 31, 1013–1023 (2012). https://doi.org/10.1038/onc.2011.299

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.299

Keywords

This article is cited by

Search

Quick links