Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

DNA damage stress response in germ cells: role of c-Abl and clinical implications

Abstract

Cells experiencing DNA damage undergo a complex response entailing cell-cycle arrest, DNA repair and apoptosis, the relative importance of the three being modulated by the extent of the lesion. The observation that Abl interacts in the nucleus with several proteins involved in different aspects of DNA repair has led to the hypothesis that this kinase is part of the damage-sensing mechanism. However, the mechanistic details underlying the role of Abl in DNA repair remain unclear. Here, I will review the evidence supporting our current understanding of Abl activation following DNA insults, while focusing on the relevance of these mechanisms in protecting DNA-injured germ cells. Early studies have shown that Abl transcripts are highly expressed in the germ line. Abl-deficient mice exhibit multiple abnormalities, increased perinatal mortality and reduced fertility. Recent findings have implicated Abl in a cisplatin-induced signaling pathway eliciting death of immature oocytes. A p53-related protein, TAp63, is an important immediate downstream effector of this pathway. Of note, pharmacological inhibition of Abl protects the ovarian reserve from the toxic effects of cisplatin. This suggests that the extent of Abl catalytic outputs may shift the balance between survival (likely through DNA repair) and activation of a death response. Taken together, these observations are consistent with the evolutionary conserved relationship between DNA damage and activation of the p53 family of transcription factors, while shedding light on the key role of Abl in dictating the fate of germ cells upon genotoxic insults.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Adrian FJ, Ding Q, Sim T, Velentza A, Sloan C, Liu Y et al. (2006). Allosteric inhibitors of Bcr-abl-dependent cell proliferation. Nat Chem Biol 2: 95–102.

    CAS  PubMed  Google Scholar 

  • Agami R, Blandino G, Oren M, Shaul Y . (1999). Interaction of c-Abl and p73alpha and their collaboration to induce apoptosis. Nature 399: 809–813.

    CAS  PubMed  Google Scholar 

  • Backhus LE, Kondapalli LA, Chang RJ, Coutifaris C, Kazer R, Woodruff TK . (2007). Oncofertility Consortium consensus statement: guidelines for ovarian tissue cryopreservation. Cancer Treat Res 138: 235–239.

    PubMed  Google Scholar 

  • Bartek J, Lukas J . (2007). DNA damage checkpoints: from initiation to recovery or adaptation. Curr Opin Cell Biol 19: 238–245.

    CAS  PubMed  Google Scholar 

  • Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al. (2005). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434: 864–870.

    CAS  PubMed  Google Scholar 

  • Baskaran R, Wood LD, Whitaker LL, Canman CE, Morgan SE, Xu Y et al. (1997). Ataxia telangiectasia mutant protein activates c-Abl tyrosine kinase in response to ionizing radiation. Nature 387: 516–519.

    Article  CAS  PubMed  Google Scholar 

  • Belyi VA, Ak P, Markert E, Wang H, Hu W, Puzio-Kuter A et al. (2010). The origins and evolution of the p53 family of genes. Cold Spring Harb Perspect Biol 2: a001198.

    PubMed  PubMed Central  Google Scholar 

  • Bourdon JC, Fernandes K, Murray-Zmijewski F, Liu G, Diot A, Xirodimas DP et al. (2005). p53 isoforms can regulate p53 transcriptional activity. Genes Dev 19: 2122–2137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodsky MH, Nordstrom W, Tsang G, Kwan E, Rubin GM, Abrams JM . (2000). Drosophila p53 binds a damage response element at the reaper locus. Cell 101: 103–113.

    CAS  PubMed  Google Scholar 

  • Brodsky MH, Weinert BT, Tsang G, Rong YS, McGinnis NM, Golic KG et al. (2004). Drosophila melanogaster MNK/Chk2 and p53 regulate multiple DNA repair and apoptotic pathways following DNA damage. Mol Cell Biol 24: 1219–1231.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burma S, Chen DJ . (2004). Role of DNA-PK in the cellular response to DNA double-strand breaks. DNA Repair (Amst) 3: 909–918.

    CAS  Google Scholar 

  • Carson CT, Schwartz RA, Stracker TH, Lilley CE, Lee DV, Weitzman MD . (2003). The Mre11 complex is required for ATM activation and the G2/M checkpoint. EMBO J 22: 6610–6620.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Celeste A, Fernandez-Capetillo O, Kruhlak MJ, Pilch DR, Staudt DW, Lee A et al. (2003). Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol 5: 675–679.

    CAS  PubMed  Google Scholar 

  • Chen G, Yuan SS, Liu W, Xu Y, Trujillo K, Song B et al. (1999a). Radiation-induced assembly of Rad51 and Rad52 recombination complex requires ATM and c-Abl. J Biol Chem 274: 12748–12752.

    CAS  PubMed  Google Scholar 

  • Chen X, Zhang J, Lee J, Lin PS, Ford JM, Zheng N et al. (2006). A kinase-independent function of c-Abl in promoting proteolytic destruction of damaged DNA binding proteins. Mol Cell 22: 489–499.

    PubMed  Google Scholar 

  • Chen Z, Seimiya H, Naito M, Mashima T, Kizaki A, Dan S et al. (1999b). ASK1 mediates apoptotic cell death induced by genotoxic stress. Oncogene 18: 173–180.

    CAS  PubMed  Google Scholar 

  • Chow CS, Barnes CM, Lippard SJ . (1995). A single HMG domain in high-mobility group 1 protein binds to DNAs as small as 20 base pairs containing the major cisplatin adduct. Biochemistry 34: 2956–2964.

    CAS  PubMed  Google Scholar 

  • Collis SJ, DeWeese TL, Jeggo PA, Parker AR . (2005). The life and death of DNA-PK. Oncogene 24: 949–961.

    CAS  PubMed  Google Scholar 

  • Cong F, Tang J, Hwang BJ, Vuong BQ, Chu G, Goff SP . (2002). Interaction between UV-damaged DNA binding activity proteins and the c-Abl tyrosine kinase. J Biol Chem 277: 34870–34878.

    CAS  PubMed  Google Scholar 

  • David-Cordonnier MH, Hamdane M, Bailly C, D'Halluin JC . (1998). The DNA binding domain of the human c-Abl tyrosine kinase preferentially binds to DNA sequences containing an AAC motif and to distorted DNA structures. Biochemistry 37: 6065–6076.

    CAS  PubMed  Google Scholar 

  • Deng X, Hofmann ER, Villanueva A, Hobert O, Capodieci P, Veach DR et al. (2004). Caenorhabditis elegans ABL-1 antagonizes p53-mediated germline apoptosis after ionizing irradiation. Nat Genet 36: 906–912.

    CAS  PubMed  Google Scholar 

  • Derry WB, Putzke AP, Rothman JH . (2001). Caenorhabditis elegans p53: role in apoptosis, meiosis, and stress resistance. Science 294: 591–595.

    CAS  PubMed  Google Scholar 

  • Dery U, Masson JY . (2007). Twists and turns in the function of DNA damage signaling and repair proteins by post-translational modifications. DNA Repair (Amst) 6: 561–577.

    CAS  Google Scholar 

  • Dunn L, Fox KR . (2009). Techniques for fertility preservation in patients with breast cancer. Curr Opin Obstet Gynecol 21: 68–73.

    PubMed  Google Scholar 

  • Durocher D, Jackson SP . (2001). DNA-PK, ATM and ATR as sensors of DNA damage: variations on a theme? Curr Opin Cell Biol 13: 225–231.

    CAS  PubMed  Google Scholar 

  • Edelmann W, Cohen PE, Kneitz B, Winand N, Lia M, Heyer J et al. (1999). Mammalian MutS homologue 5 is required for chromosome pairing in meiosis. Nat Genet 21: 123–127.

    CAS  PubMed  Google Scholar 

  • Falck J, Coates J, Jackson SP . (2005). Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434: 605–611.

    CAS  PubMed  Google Scholar 

  • Foray N, Marot D, Randrianarison V, Venezia ND, Picard D, Perricaudet M et al. (2002). Constitutive association of BRCA1 and c-Abl and its ATM-dependent disruption after irradiation. Mol Cell Biol 22: 4020–4032.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gardino SL, Jeruss JS, Woodruff TK . (2010). Using decision trees to enhance interdisciplinary team work: the case of oncofertility. J Assist Reprod Genet 27: 227–231.

    PubMed  PubMed Central  Google Scholar 

  • Gellert M . (2002). V(D)J recombination: RAG proteins, repair factors, and regulation. Annu Rev Biochem 71: 101–132.

    CAS  PubMed  Google Scholar 

  • Goddard JM, Weiland JJ, Capecchi MR . (1986). Isolation and characterization of Caenorhabditis elegans DNA sequences homologous to the v-abl oncogene. Proc Natl Acad Sci USA 83: 2172–2176.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goff SP, Gilboa E, Witte ON, Baltimore D . (1980). Structure of the Abelson murine leukemia virus genome and the homologous cellular gene: studies with cloned viral DNA. Cell 22: 777–785.

    CAS  PubMed  Google Scholar 

  • Goldberg Z, Vogt Sionov R, Berger M, Zwang Y, Perets R, Van Etten RA et al. (2002). Tyrosine phosphorylation of Mdm2 by c-Abl: implications for p53 regulation. EMBO J 21: 3715–3727.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gonfloni S . (2010). Modulating c-Abl nuclear activity as a strategy to preserve female fertility. Cell Cycle 9: 217–218.

    CAS  PubMed  Google Scholar 

  • Gonfloni S, Di Tella L, Caldarola S, Cannata SM, Klinger FG, Di Bartolomeo C et al. (2009). Inhibition of the c-Abl-TAp63 pathway protects mouse oocytes from chemotherapy-induced death. Nat Med 15: 1179–1185.

    CAS  PubMed  Google Scholar 

  • Gonfloni S, Williams JC, Hattula K, Weijland A, Wierenga RK, Superti-Furga G . (1997). The role of the linker between the SH2 domain and catalytic domain in the regulation and function of Src. EMBO J 16: 7261–7271.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gong JG, Costanzo A, Yang HQ, Melino G, Kaelin Jr WG, Levrero M et al. (1999). The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature 399: 806–809.

    CAS  PubMed  Google Scholar 

  • Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T et al. (2005). Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434: 907–913.

    CAS  PubMed  Google Scholar 

  • Gu JJ, Ryu JR, Pendergast AM . (2009). Abl tyrosine kinases in T-cell signaling. Immunol Rev 228: 170–183.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hantschel O, Nagar B, Guettler S, Kretzschmar J, Dorey K, Kuriyan J et al. (2003). A myristoyl/phosphotyrosine switch regulates c-Abl. Cell 112: 845–857.

    CAS  PubMed  Google Scholar 

  • Hantschel O, Superti-Furga G . (2004). Regulation of the c-Abl and Bcr-Abl tyrosine kinases. Nat Rev Mol Cell Biol 5: 33–44.

    CAS  PubMed  Google Scholar 

  • Hardin JD, Boast S, Schwartzberg PL, Lee G, Alt FW, Stall AM et al. (1996). Abnormal peripheral lymphocyte function in c-abl mutant mice. Cell Immunol 172: 100–107.

    CAS  PubMed  Google Scholar 

  • Her C, Doggett NA . (1998). Cloning, structural characterization, and chromosomal localization of the human orthologue of Saccharomyces cerevisiae MSH5 gene. Genomics 52: 50–61.

    CAS  PubMed  Google Scholar 

  • Her C, Zhao N, Wu X, Tompkins JD . (2007). MutS homologues hMSH4 and hMSH5: diverse functional implications in humans. Front Biosci 12: 905–911.

    CAS  PubMed  Google Scholar 

  • Hulvat MC, Jeruss JS . (2009). Maintaining fertility in young women with breast cancer. Curr Treat Options Oncol 10: 308–317.

    PubMed  PubMed Central  Google Scholar 

  • Iwaoki Y, Matsuda H, Mutter GL, Watrin F, Wolgemuth DJ . (1993). Differential expression of the proto-oncogenes c-abl and c-mos in developing mouse germ cells. Exp Cell Res 206: 212–219.

    CAS  PubMed  Google Scholar 

  • Jackson SP, Bartek J . (2009). The DNA-damage response in human biology and disease. Nature 461: 1071–1078.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeruss JS, Woodruff TK . (2009). Preservation of fertility in patients with cancer. N Engl J Med 360: 902–911.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston RJ, Wallace WH . (2009). Normal ovarian function and assessment of ovarian reserve in the survivor of childhood cancer. Pediatr Blood Cancer 53: 296–302.

    PubMed  Google Scholar 

  • Jones EV, Dickman MJ, Whitmarsh AJ . (2007). Regulation of p73-mediated apoptosis by c-Jun N-terminal kinase. Biochem J 405: 617–623.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Junttila MR, Evan GI . (2009). p53--a Jack of all trades but master of none. Nat Rev Cancer 9: 821–829.

    CAS  PubMed  Google Scholar 

  • Kastan MB, Bartek J . (2004). Cell-cycle checkpoints and cancer. Nature 432: 316–323.

    CAS  PubMed  Google Scholar 

  • Khanna KK, Jackson SP . (2001). DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27: 247–254.

    CAS  PubMed  Google Scholar 

  • Kharbanda S, Pandey P, Jin S, Inoue S, Bharti A, Yuan ZM et al. (1997a). Functional interaction between DNA-PK and c-Abl in response to DNA damage. Nature 386: 732–735.

    CAS  PubMed  Google Scholar 

  • Kharbanda S, Pandey P, Morris PL, Whang Y, Xu Y, Sawant S et al. (1998). Functional role for the c-Abl tyrosine kinase in meiosis I. Oncogene 16: 1773–1777.

    CAS  PubMed  Google Scholar 

  • Kharbanda S, Yuan ZM, Weichselbaum R, Kufe D . (1997b). Functional role for the c-Abl protein tyrosine kinase in the cellular response to genotoxic stress. Biochim Biophys Acta 1333: O1–O7.

    CAS  PubMed  Google Scholar 

  • Kitao H, Yuan ZM . (2002). Regulation of ionizing radiation-induced Rad52 nuclear foci formation by c-Abl-mediated phosphorylation. J Biol Chem 277: 48944–48948.

    CAS  PubMed  Google Scholar 

  • Kneitz B, Cohen PE, Avdievich E, Zhu L, Kane MF, Hou Jr H et al. (2000). MutS homolog 4 localization to meiotic chromosomes is required for chromosome pairing during meiosis in male and female mice. Genes Dev 14: 1085–1097.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ko LJ, Prives C . (1996). p53: puzzle and paradigm. Genes Dev 10: 1054–1072.

    CAS  PubMed  Google Scholar 

  • Kurita T, Cunha GR, Robboy SJ, Mills AA, Medina RT . (2005). Differential expression of p63 isoforms in female reproductive organs. Mech Dev 122: 1043–1055.

    CAS  PubMed  Google Scholar 

  • Kuriyan J, Eisenberg D . (2007). The origin of protein interactions and allostery in colocalization. Nature 450: 983–990.

    CAS  PubMed  Google Scholar 

  • Lee JH, Paull TT . (2005). ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308: 551–554.

    CAS  PubMed  Google Scholar 

  • Lev Z, Leibovitz N, Segev O, Shilo BZ . (1984). Expression of the src and abl cellular oncogenes during development of Drosophila melanogaster. Mol Cell Biol 4: 982–984.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Boast S, de los Santos K, Schieren I, Quiroz M, Teitelbaum SL et al. (2000). Mice deficient in Abl are osteoporotic and have defects in osteoblast maturation. Nat Genet 24: 304–308.

    CAS  PubMed  Google Scholar 

  • Lieber MR, Ma Y, Pannicke U, Schwarz K . (2004). The mechanism of vertebrate nonhomologous DNA end joining and its role in V(D)J recombination. DNA Repair (Amst) 3: 817–826.

    CAS  Google Scholar 

  • Lobo RA . (2005). Potential options for preservation of fertility in women. N Engl J Med 353: 64–73.

    CAS  PubMed  Google Scholar 

  • Lukas C, Falck J, Bartkova J, Bartek J, Lukas J . (2003). Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nat Cell Biol 5: 255–260.

    CAS  PubMed  Google Scholar 

  • Maltaris T, Beckmann MW, Dittrich R . (2009). Review. Fertility preservation for young female cancer patients. In vivo 23: 123–130.

    PubMed  Google Scholar 

  • Maltaris T, Weigel M, Mueller A, Schmidt M, Seufert R, Fischl F et al. (2008). Cancer and fertility preservation: fertility preservation in breast cancer patients. Breast Cancer Res 10: 206.

    PubMed  PubMed Central  Google Scholar 

  • Mandon-Pepin B, Touraine P, Kuttenn F, Derbois C, Rouxel A, Matsuda F et al. (2008). Genetic investigation of four meiotic genes in women with premature ovarian failure. Eur J Endocrinol 158: 107–115.

    CAS  PubMed  Google Scholar 

  • Meijer D, Hermans A, von Lindern M, van Agthoven T, de Klein A, Mackenbach P et al. (1987). Molecular characterization of the testis specific c-abl mRNA in mouse. EMBO J 6: 4041–4048.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michel B, Ehrlich SD, Uzest M . (1997). DNA double-strand breaks caused by replication arrest. EMBO J 16: 430–438.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morita Y, Perez GI, Paris F, Miranda SR, Ehleiter D, Haimovitz-Friedman A et al. (2000). Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. Nat Med 6: 1109–1114.

    CAS  PubMed  Google Scholar 

  • Muller R, Slamon DJ, Tremblay JM, Cline MJ, Verma IM . (1982). Differential expression of cellular oncogenes during pre- and postnatal development of the mouse. Nature 299: 640–644.

    CAS  PubMed  Google Scholar 

  • Nagar B . (2007). c-Abl tyrosine kinase and inhibition by the cancer drug imatinib (Gleevec/STI-571). J Nutr 137: 1518S–1523S, discussion 1548S.

    CAS  PubMed  Google Scholar 

  • Nagar B, Hantschel O, Young MA, Scheffzek K, Veach D, Bornmann W et al. (2003). Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell 112: 859–871.

    CAS  PubMed  Google Scholar 

  • Nehme A, Baskaran R, Aebi S, Fink D, Nebel S, Cenni B et al. (1997). Differential induction of c-Jun NH2-terminal kinase and c-Abl kinase in DNA mismatch repair-proficient and -deficient cells exposed to cisplatin. Cancer Res 57: 3253–3257.

    CAS  PubMed  Google Scholar 

  • Ohndorf UM, Rould MA, He Q, Pabo CO, Lippard SJ . (1999). Basis for recognition of cisplatin-modified DNA by high-mobility-group proteins. Nature 399: 708–712.

    CAS  PubMed  Google Scholar 

  • Ohren JF, Sebolt-Leopold JS . (2006). Inhibitors of Bcr-abl. Breaking new ground again. Nat Chem Biol 2: 63–64.

    CAS  PubMed  Google Scholar 

  • Ollmann M, Young LM, Di Como CJ, Karim F, Belvin M, Robertson S et al. (2000). Drosophila p53 is a structural and functional homolog of the tumor suppressor p53. Cell 101: 91–101.

    CAS  PubMed  Google Scholar 

  • Oppi C, Shore SK, Reddy EP . (1987). Nucleotide sequence of testis-derived c-abl cDNAs: implications for testis-specific transcription and abl oncogene activation. Proc Natl Acad Sci USA 84: 8200–8204.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pandita TK . (2003). A multifaceted role for ATM in genome maintenance. Expert Rev Mol Med 5: 1–21.

    PubMed  Google Scholar 

  • Panier S, Durocher D . (2009). Regulatory ubiquitylation in response to DNA double-strand breaks. DNA Repair (Amst) 8: 436–443.

    CAS  Google Scholar 

  • Peate M, Meiser B, Hickey M, Friedlander M . (2009). The fertility-related concerns, needs and preferences of younger women with breast cancer: a systematic review. Breast Cancer Res Treat 116: 215–223.

    PubMed  Google Scholar 

  • Pendergast AM . (2002). The Abl family kinases: mechanisms of regulation and signaling. Adv Cancer Res 85: 51–100.

    CAS  PubMed  Google Scholar 

  • Petrini JH, Stracker TH . (2003). The cellular response to DNA double-strand breaks: defining the sensors and mediators. Trends Cell Biol 13: 458–462.

    CAS  PubMed  Google Scholar 

  • Ponzetto C, Wolgemuth DJ . (1985). Haploid expression of a unique c-abl transcript in the mouse male germ line. Mol Cell Biol 5: 1791–1794.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Propst F, Rosenberg MP, Oskarsson MK, Russell LB, Nguyen-Huu MC, Nadeau J et al. (1988). Genetic analysis and developmental regulation of testis-specific RNA expression of Mos, Abl, actin and Hox-1.4. Oncogene 2: 227–233.

    CAS  PubMed  Google Scholar 

  • Raina D, Ahmad R, Kumar S, Ren J, Yoshida K, Kharbanda S et al. (2006). MUC1 oncoprotein blocks nuclear targeting of c-Abl in the apoptotic response to DNA damage. EMBO J 25: 3774–3783.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson C, Horikoshi N, Pandita TK . (2004). The role of the DNA double-strand break response network in meiosis. DNA Repair (Amst) 3: 1149–1164.

    CAS  Google Scholar 

  • Riley T, Sontag E, Chen P, Levine A . (2008). Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9: 402–412.

    CAS  PubMed  Google Scholar 

  • Rogakou EP, Boon C, Redon C, Bonner WM . (1999). Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 146: 905–916.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rutkowski R, Hofmann K, Gartner A . (2010). Phylogeny and function of the invertebrate p53 superfamily. Cold Spring Harb Perspect Biol 2: a001131.

    PubMed  PubMed Central  Google Scholar 

  • Sawyers CL, McLaughlin J, Goga A, Havlik M, Witte O . (1994). The nuclear tyrosine kinase c-Abl negatively regulates cell growth. Cell 77: 121–131.

    CAS  PubMed  Google Scholar 

  • Schindler T, Bornmann W, Pellicena P, Miller WT, Clarkson B, Kuriyan J . (2000). Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 289: 1938–1942.

    CAS  PubMed  Google Scholar 

  • Schumacher B, Hofmann K, Boulton S, Gartner A . (2001). The C elegans homolog of the p 53 tumor suppressor is required for DNA damage-induced apoptosis. Curr Biol 11: 1722–1727.

    CAS  PubMed  Google Scholar 

  • Schumacher B, Schertel C, Wittenburg N, Tuck S, Mitani S, Gartner A et al. (2005). C elegans ced- 13 can promote apoptosis and is induced in response to DNA damage. Cell Death Differ 12: 153–161.

    CAS  PubMed  Google Scholar 

  • Schwartzberg PL, Stall AM, Hardin JD, Bowdish KS, Humaran T, Boast S et al. (1991). Mice homozygous for the ablm1 mutation show poor viability and depletion of selected B and T cell populations. Cell 65: 1165–1175.

    CAS  PubMed  Google Scholar 

  • Shafman T, Khanna KK, Kedar P, Spring K, Kozlov S, Yen T et al. (1997). Interaction between ATM protein and c-Abl in response to DNA damage. Nature 387: 520–523.

    CAS  PubMed  Google Scholar 

  • Shaul Y . (2000). c-Abl: activation and nuclear targets. Cell Death Differ 7: 10–16.

    CAS  PubMed  Google Scholar 

  • Shaul Y, Ben-Yehoyada M . (2005). Role of c-Abl in the DNA damage stress response. Cell Res 15: 33–35.

    CAS  PubMed  Google Scholar 

  • Shilo BZ, Weinberg RA . (1981). DNA sequences homologous to vertebrate oncogenes are conserved in Drosophila melanogaster. Proc Natl Acad Sci USA 78: 6789–6792.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu H, Popova M, Fleury F, Kobayashi M, Hayashi N, Sakane I et al. (2009). c-ABL tyrosine kinase stabilizes RAD51 chromatin association. Biochem Biophys Res Commun 382: 286–291.

    CAS  PubMed  Google Scholar 

  • Sirvent A, Benistant C, Roche S . (2008). Cytoplasmic signalling by the c-Abl tyrosine kinase in normal and cancer cells. Biol Cell 100: 617–631.

    CAS  PubMed  Google Scholar 

  • Sogame N, Kim M, Abrams JM . (2003). Drosophila p53 preserves genomic stability by regulating cell death. Proc Natl Acad Sci USA 100: 4696–4701.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Songyang Z, Shoelson SE, Chaudhuri M, Gish G, Pawson T, Haser WG et al. (1993). SH2 domains recognize specific phosphopeptide sequences. Cell 72: 767–778.

    CAS  PubMed  Google Scholar 

  • Stojic L, Brun R, Jiricny J . (2004). Mismatch repair and DNA damage signalling. DNA Repair (Amst) 3: 1091–1101.

    CAS  Google Scholar 

  • Suh EK, Yang A, Kettenbach A, Bamberger C, Michaelis AH, Zhu Z et al. (2006). p63 protects the female germ line during meiotic arrest. Nature 444: 624–628.

    CAS  PubMed  Google Scholar 

  • Sun H, Treco D, Schultes NP, Szostak JW . (1989). Double-strand breaks at an initiation site for meiotic gene conversion. Nature 338: 87–90.

    CAS  PubMed  Google Scholar 

  • Taagepera S, McDonald D, Loeb JE, Whitaker LL, McElroy AK, Wang JY et al. (1998). Nuclear-cytoplasmic shuttling of C-ABL tyrosine kinase. Proc Natl Acad Sci USA 95: 7457–7462.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takao N, Mori R, Kato H, Shinohara A, Yamamoto K . (2000). c-Abl tyrosine kinase is not essential for ataxia telangiectasia mutated functions in chromosomal maintenance. J Biol Chem 275: 725–728.

    CAS  PubMed  Google Scholar 

  • Ting NS, Lee WH . (2004). The DNA double-strand break response pathway: becoming more BRCAish than ever. DNA Repair (Amst) 3: 935–944.

    CAS  Google Scholar 

  • Tompkins JD, Wu X, Chu YL, Her C . (2009). Evidence for a direct involvement of hMSH5 in promoting ionizing radiation induced apoptosis. Exp Cell Res 315: 2420–2432.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tybulewicz VL, Crawford CE, Jackson PK, Bronson RT, Mulligan RC . (1991). Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 65: 1153–1163.

    CAS  PubMed  Google Scholar 

  • Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shiloh Y . (2003). Requirement of the MRN complex for ATM activation by DNA damage. EMBO J 22: 5612–5621.

    CAS  PubMed  PubMed Central  Google Scholar 

  • van der Kaaij MAE, van Echten-Arends J, Simons AH, Kluin-Nelemans HC . (2010). Fertility preservation after chemotherapy for Hodgkin lymphoma. Hematol Oncol (e-pub ahead of print 15 March 2010).

  • Vigneri P, Wang JY . (2001). Induction of apoptosis in chronic myelogenous leukemia cells through nuclear entrapment of BCR-ABL tyrosine kinase. Nat Med 7: 228–234.

    CAS  PubMed  Google Scholar 

  • Wang JY . (2000). Regulation of cell death by the Abl tyrosine kinase. Oncogene 19: 5643–5650.

    CAS  PubMed  Google Scholar 

  • Wang JY . (2004). Controlling Abl: auto-inhibition and co-inhibition? Nat Cell Biol 6: 3–7.

    CAS  PubMed  Google Scholar 

  • Wang JY, Baltimore D . (1983). Cellular RNA homologous to the Abelson murine leukemia virus transforming gene: expression and relationship to the viral sequence. Mol Cell Biol 3: 773–779.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JY, Ki SW . (2001). Choosing between growth arrest and apoptosis through the retinoblastoma tumour suppressor protein, Abl and p73. Biochem Soc Trans 29: 666–673.

    CAS  PubMed  Google Scholar 

  • Ward JF . (1988). DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res Mol Biol 35: 95–125.

    CAS  PubMed  Google Scholar 

  • Weinert TA, Hartwell LH . (1988). The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241: 317–322.

    CAS  PubMed  Google Scholar 

  • Weisberg E, Manley PW, Cowan-Jacob SW, Hochhaus A, Griffin JD . (2007). Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat Rev Cancer 7: 345–356.

    CAS  PubMed  Google Scholar 

  • Wen ST, Jackson PK, Van Etten RA . (1996). The cytostatic function of c-Abl is controlled by multiple nuclear localization signals and requires the p53 and Rb tumor suppressor gene products. EMBO J 15: 1583–1595.

    CAS  PubMed  PubMed Central  Google Scholar 

  • West ER, Zelinski MB, Kondapalli LA, Gracia C, Chang J, Coutifaris C et al. (2009). Preserving female fertility following cancer treatment: current options and future possibilities. Pediatr Blood Cancer 53: 289–295.

    PubMed  PubMed Central  Google Scholar 

  • Williams JC, Weijland A, Gonfloni S, Thompson A, Courtneidge SA, Superti-Furga G et al. (1997). The 2.35 A crystal structure of the inactivated form of chicken Src: a dynamic molecule with multiple regulatory interactions. J Mol Biol 274: 757–775.

    CAS  PubMed  Google Scholar 

  • Woodruff TK . (2007). The emergence of a new interdiscipline: oncofertility. Cancer Treat Res 138: 3–11.

    PubMed  Google Scholar 

  • Woodruff TK . (2008). Making eggs: is it now or later? Nat Med 14: 1190–1191.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woodruff TK . (2009). Preserving fertility during cancer treatment. Nat Med 15: 1124–1125.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Harrison SC, Eck MJ . (1997). Three-dimensional structure of the tyrosine kinase c-Src. Nature 385: 595–602.

    CAS  PubMed  Google Scholar 

  • Yi W, Lee TH, Tompkins JD, Zhu F, Wu X, Her C . (2006). Physical and functional interaction between hMSH5 and c-Abl. Cancer Res 66: 151–158.

    CAS  PubMed  Google Scholar 

  • Yi W, Wu X, Lee TH, Doggett NA, Her C . (2005). Two variants of MutS homolog hMSH5: prevalence in humans and effects on protein interaction. Biochem Biophys Res Commun 332: 524–532.

    CAS  PubMed  Google Scholar 

  • Yoshida K . (2008). Nuclear trafficking of pro-apoptotic kinases in response to DNA damage. Trends Mol Med 14: 305–313.

    CAS  PubMed  Google Scholar 

  • Yoshida K, Yamaguchi T, Natsume T, Kufe D, Miki Y . (2005). JNK phosphorylation of 14-3-3 proteins regulates nuclear targeting of c-Abl in the apoptotic response to DNA damage. Nat Cell Biol 7: 278–285.

    CAS  PubMed  Google Scholar 

  • Yuan J, Chen J . (2010). MRE11-RAD50-NBS1 complex dictates DNA repair independent of H2AX. J Biol Chem 285: 1097–1104.

    CAS  PubMed  Google Scholar 

  • Yuan SS, Chang HL, Lee EY . (2003). Ionizing radiation-induced Rad51 nuclear focus formation is cell cycle-regulated and defective in both ATM(−/−) and c-Abl(−/−) cells. Mutat Res 525: 85–92.

    CAS  PubMed  Google Scholar 

  • Yuan SS, Lee SY, Chen G, Song M, Tomlinson GE, Lee EY . (1999). BRCA2 is required for ionizing radiation-induced assembly of Rad51 complex in vivo. Cancer Res 59: 3547–3551.

    CAS  PubMed  Google Scholar 

  • Yuan ZM, Huang Y, Ishiko T, Nakada S, Utsugisawa T, Kharbanda S et al. (1998). Regulation of Rad51 function by c-Abl in response to DNA damage. J Biol Chem 273: 3799–3802.

    CAS  PubMed  Google Scholar 

  • Zhang J, Adrian FJ, Jahnke W, Cowan-Jacob SW, Li AG, Iacob RE et al. (2010). Targeting Bcr-Abl by combining allosteric with ATP-binding-site inhibitors. Nature 463: 501–506.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Wang JY . (2004). Death by Abl: a matter of location. Curr Top Dev Biol 59: 165–192.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank Gianni Cesareni for critical reading of the manuscript, Giorgio Mazzeo for his continuous support, Andrea Novelletto, Claudia Cerella, Marc Diederich, for suggestions, and Claudia Di Bartolomeo for assistance with the figures. Lastly, I thank all my collaborators (past and present) for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Gonfloni.

Ethics declarations

Competing interests

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonfloni, S. DNA damage stress response in germ cells: role of c-Abl and clinical implications. Oncogene 29, 6193–6202 (2010). https://doi.org/10.1038/onc.2010.410

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.410

Keywords

This article is cited by

Search

Quick links