Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Harnessing the complexity of DNA-damage response pathways to improve cancer treatment outcomes

Abstract

The DNA-damage response (DDR) pathways consist of interconnected components that respond to DNA damage to allow repair and promote cell survival. The DNA repair pathways and downstream cellular responses have diverged in cancer cells compared with normal cells because of genetic alterations that underlie drug resistance, disabled repair and resistance to apoptosis. Consequently, abrogating DDR pathways represents an important mechanism for enhancing the therapeutic index of DNA-damaging anticancer agents. In this review, we discuss the DDR pathways that determine antitumor effects of DNA-damaging agents with a specific focus on treatment outcomes in tumors carrying a defective p53 pathway. Finely tuned survival and death pathways govern the cellular responses downstream of the cytotoxic insults inherent in anticancer treatment. The significance and relative contributions of cellular responses including apoptosis, mitotic catastrophe and senescence are discussed in relation to the web of molecular interactions that affect such outcomes. We propose that promising combinations of DNA-damaging anticancer treatments with DDR-pathway inhibition would be further enhanced by activating downstream apoptotic pathways. The proposed rationale ensures that actual cell death is the preferred outcome of cancer treatment instead of other responses, including reversible cell cycle arrest, autophagy or senescence. Finally, to better measure the contribution of different cellular responses to anticancer treatments, multiplex in vivo assessments of therapy-induced response pathways such as cell death, senescence and mitotic catastrophe is desirable rather than the current reliance on the measurement of a single response pathway such as apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Abraham RT . (2001). Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15: 2177–2196.

    Article  CAS  PubMed  Google Scholar 

  • Adamo A, Collis SJ, Adelman CA, Silva N, Horejsi Z, Ward JD et al. (2010). Preventing nonhomologous end joining suppresses DNA repair defects of Fanconi anemia. Mol Cell 39: 25–35.

    CAS  PubMed  Google Scholar 

  • Adams JM, Cory S . (2007). The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26: 1324–1337.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Agami R, Bernards R . (2000). Distinct initiation and maintenance mechanisms cooperate to induce G1 cell cycle arrest in response to DNA damage. Cell 102: 55–66.

    CAS  PubMed  Google Scholar 

  • Al-Ejeh F, Darby JM, Pensa K, Diener KR, Hayball JD, Brown MP . (2007). In vivo targeting of dead tumor cells in a murine tumor model using a monoclonal antibody specific for the La autoantigen. 13: 5519s–55127s.

  • Al-Ejeh F, Darby JM, Tsopelas C, Smyth D, Manavis J, Brown MP . (2009). La-specific monoclonal antibody detects the apoptotic tumor response to life-prolonging and DNA-damaging chemotherapy. PLoS ONE 4: e4558.

    PubMed  PubMed Central  Google Scholar 

  • Aliouat-Denis CM, Dendouga N, Van den Wyngaert I, Goehlmann H, Steller U, van de Weyer I et al. (2005). p53-independent regulation of p21Waf1/Cip1 expression and senescence by Chk2. Mol Cancer Res 3: 627–634.

    CAS  PubMed  Google Scholar 

  • Altieri DC . (2003). Validating survivin as a cancer therapeutic target. Nat Rev Cancer 3: 46–54.

    CAS  PubMed  Google Scholar 

  • Ashwell S, Zabludoff S . (2008). DNA damage detection and repair pathways—recent advances with inhibitors of checkpoint kinases in cancer therapy. Clin Cancer Res 14: 4032–4037.

    CAS  PubMed  Google Scholar 

  • Audebert M, Salles B, Calsou P . (2004). Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. J Biol Chem 279: 55117–55126.

    CAS  PubMed  Google Scholar 

  • Audebert M, Salles B, Calsou P . (2008). Effect of double-strand break DNA sequence on the PARP-1 NHEJ pathway. Biochem Biophys Res Commun 369: 982–988.

    CAS  PubMed  Google Scholar 

  • Bahassi el M, Myer DL, McKenney RJ, Hennigan RF, Stambrook PJ . (2006). Priming phosphorylation of Chk2 by polo-like kinase 3 (Plk3) mediates its full activation by ATM and a downstream checkpoint in response to DNA damage. Mutat Res 596: 166–176.

    CAS  PubMed  Google Scholar 

  • Barlow C, Liyanage M, Moens PB, Tarsounas M, Nagashima K, Brown K et al. (1998). Atm deficiency results in severe meiotic disruption as early as leptonema of prophase I. Development 125: 4007–4017.

    CAS  PubMed  Google Scholar 

  • Bentle MS, Bey EA, Dong Y, Reinicke KE, Boothman DA . (2006). New tricks for old drugs: the anticarcinogenic potential of DNA repair inhibitors. J Mol Histol 37: 203–218.

    CAS  PubMed  Google Scholar 

  • Bhattathiri NV, Bharathykkutty C, Prathapan R, Chirayathmanjiyil DA, Nair KM . (1998). Prediction of radiosensitivity of oral cancers by serial cytological assay of nuclear changes. Radiother Oncol 49: 61–65.

    CAS  PubMed  Google Scholar 

  • Blasina A, Hallin J, Chen E, Arango ME, Kraynov E, Register J et al. (2008). Breaching the DNA damage checkpoint via PF-00477736, a novel small-molecule inhibitor of checkpoint kinase 1. Mol Cancer Ther 7: 2394–2404.

    CAS  PubMed  Google Scholar 

  • Boulton SJ . (2010). DNA repair: decision at the break point. Nature 465: 301–302.

    CAS  PubMed  Google Scholar 

  • Bouwman P, Aly A, Escandell JM, Pieterse M, Bartkova J, van der Gulden H et al. (2010). 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat Struct Mol Biol 17: 688–695.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B et al. (2005). Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436: 660–665.

    CAS  PubMed  Google Scholar 

  • Branzei D, Foiani M . (2008). Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol 9: 297–308.

    CAS  PubMed  Google Scholar 

  • Bredesen DE . (2008). Toward a mechanistic taxonomy for programmed cell death pathways. In: Roninson IB, Brown JM and Bredesen DE (eds). Beyond Apoptosis: Cellular Outcomes of Cancer Therapy. Informa Healthcare: New York, NY. pp 73–91.

    Google Scholar 

  • Brown EJ, Baltimore D . (2000). ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev 14: 397–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JM, Wilson G . (2003). Apoptosis genes and resistance to cancer therapy: What does the experimental and clinical data tell us? Cancer Biol Ther 2: 477–490.

    CAS  PubMed  Google Scholar 

  • Brown JM, Wouters BG . (1999). Apoptosis, p53, and tumor cell sensitivity to anticancer agents. Cancer Res 59: 1391–1399.

    CAS  PubMed  Google Scholar 

  • Brown JM, Wouters BG . (2001). Apoptosis: mediator or mode of cell killing by anticancer agents? Drug Resist Updat 4: 135–136.

    CAS  PubMed  Google Scholar 

  • Bryant HE, Helleday T . (2006). Inhibition of poly (ADP-ribose) polymerase activates ATM which is required for subsequent homologous recombination repair. Nucleic Acids Res 34: 1685–1691.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E et al. (2005). Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434: 913–917.

    CAS  PubMed  Google Scholar 

  • Bucher N, Britten CD . (2008). G2 checkpoint abrogation and checkpoint kinase-1 targeting in the treatment of cancer. Br J Cancer 98: 523–528.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bunting SF, Callen E, Wong N, Chen HT, Polato F, Gunn A et al. (2010). 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141: 243–254.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Calabrese CR, Almassy R, Barton S, Batey MA, Calvert AH, Canan-Koch S et al. (2004). Anticancer chemosensitization and radiosensitization by the novel poly(ADP-ribose) polymerase-1 inhibitor AG14361. J Natl Cancer Inst 96: 56–67.

    CAS  PubMed  Google Scholar 

  • Calabrese CR, Batey MA, Thomas HD, Durkacz BW, Wang LZ, Kyle S et al. (2003). Identification of potent nontoxic poly(ADP-Ribose) polymerase-1 inhibitors: chemopotentiation and pharmacological studies. Clin Cancer Res 9: 2711–2718.

    CAS  PubMed  Google Scholar 

  • Campisi J . (2008). Cellular senescence and its effects on carcinogenesis. In: Roninson IB, Brown JM and Bredesen DE (eds). Beyond Apoptosis: Cellular Outcomes of Cancer Therapy. pp 175–193.

    Google Scholar 

  • Chang BD, Xuan Y, Broude EV, Zhu H, Schott B, Fang J et al. (1999). Role of p53 and p21waf1/cip1 in senescence-like terminal proliferation arrest induced in human tumor cells by chemotherapeutic drugs. Oncogene 18: 4808–4818.

    CAS  PubMed  Google Scholar 

  • Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M et al. (2005). Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436: 725–730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Xiao Z, Gu WZ, Xue J, Bui MH, Kovar P et al. (2006). Selective Chk1 inhibitors differentially sensitize p53-deficient cancer cells to cancer therapeutics. Int J Cancer 119: 2784–2794.

    CAS  PubMed  Google Scholar 

  • Cho SH, Toouli CD, Fujii GH, Crain C, Parry D . (2005). Chk1 is essential for tumor cell viability following activation of the replication checkpoint. Cell Cycle 4: 131–139.

    CAS  PubMed  Google Scholar 

  • Cohen A, Ziv I, Aloya T, Levin G, Kidron D, Grimberg H et al. (2007). Monitoring of chemotherapy-induced cell death in melanoma tumors by N,N′-didansyl-l-cystine. Technol Cancer Res Treat 6: 221–234.

    CAS  PubMed  Google Scholar 

  • Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M et al. (2005). Tumour biology: senescence in premalignant tumours. Nature 436: 642.

    CAS  PubMed  Google Scholar 

  • Cowell IG, Durkacz BW, Tilby MJ . (2005). Sensitization of breast carcinoma cells to ionizing radiation by small molecule inhibitors of DNA-dependent protein kinase and ataxia telangiectsia mutated. Biochem Pharmacol 71: 13–20.

    CAS  PubMed  Google Scholar 

  • Cragg MS, Harris C, Strasser A, Scott CL . (2009). Unleashing the power of inhibitors of oncogenic kinases through BH3 mimetics. Nat Rev Cancer 9: 321–326.

    CAS  PubMed  Google Scholar 

  • Curtin NJ, Wang LZ, Yiakouvaki A, Kyle S, Arris CA, Canan-Koch S et al. (2004). Novel poly(ADP-ribose) polymerase-1 inhibitor, AG14361, restores sensitivity to temozolomide in mismatch repair-deficient cells. Clin Cancer Res 10: 881–889.

    CAS  PubMed  Google Scholar 

  • de Bruin EC, Medema JP . (2008). Apoptosis and non-apoptotic deaths in cancer development and treatment response. Cancer Treat Rev 34: 737–749.

    PubMed  Google Scholar 

  • de Klein A, Muijtjens M, van Os R, Verhoeven Y, Smit B, Carr AM et al. (2000). Targeted disruption of the cell-cycle checkpoint gene ATR leads to early embryonic lethality in mice. Curr Biol 10: 479–482.

    CAS  PubMed  Google Scholar 

  • DiGiuseppe JA, Redston MS, Yeo CJ, Kern SE, Hruban RH . (1995). p53-independent expression of the cyclin-dependent kinase inhibitor p21 in pancreatic carcinoma. Am J Pathol 147: 884–888.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duffy MJ, O'Donovan N, Brennan DJ, Gallagher WM, Ryan BM . (2007). Survivin: a promising tumor biomarker. Cancer Lett 249: 49–60.

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg-Lerner A, Bialik S, Simon HU, Kimchi A . (2009). Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ 16: 966–975.

    CAS  PubMed  Google Scholar 

  • Evers B, Drost R, Schut E, de Bruin M, van der Burg E, Derksen PW et al. (2008). Selective inhibition of BRCA2-deficient mammary tumor cell growth by AZD2281 and cisplatin. Clin Cancer Res 14: 3916–3925.

    CAS  PubMed  Google Scholar 

  • Ewald B, Sampath D, Plunkett W . (2007). H2AX phosphorylation marks gemcitabine-induced stalled replication forks and their collapse upon S-phase checkpoint abrogation. Mol Cancer Ther 6: 1239–1248.

    CAS  PubMed  Google Scholar 

  • Falkvoll KH . (1990). The occurrence of apoptosis, abnormal mitoses, cells dying in mitosis and micronuclei in a human melanoma xenograft exposed to single dose irradiation. Strahlenther Onkol 166: 487–492.

    CAS  PubMed  Google Scholar 

  • Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB et al. (2005). Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434: 917–921.

    CAS  PubMed  Google Scholar 

  • Friedberg EC . (2001). How nucleotide excision repair protects against cancer. Nat Rev Cancer 1: 22–33.

    CAS  PubMed  Google Scholar 

  • Gallmeier E, Kern SE . (2005). Absence of specific cell killing of the BRCA2-deficient human cancer cell line CAPAN1 by poly(ADP-ribose) polymerase inhibition. Cancer Biol Ther 4: 703–706.

    CAS  PubMed  Google Scholar 

  • Gascoigne KE, Taylor SS . (2008). Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell 14: 111–122.

    CAS  PubMed  Google Scholar 

  • Gatei M, Sloper K, Sorensen C, Syljuasen R, Falck J, Hobson K et al. (2003). Ataxia-telangiectasia-mutated (ATM) and NBS1-dependent phosphorylation of Chk1 on Ser-317 in response to ionizing radiation. J Biol Chem 278: 14806–14811.

    CAS  PubMed  Google Scholar 

  • Goldsmith KC, Liu X, Dam V, Morgan BT, Shabbout M, Cnaan A et al. (2006). BH3 peptidomimetics potently activate apoptosis and demonstrate single agent efficacy in neuroblastoma. Oncogene 25: 4525–4533.

    CAS  PubMed  Google Scholar 

  • Griffin RJ, Fontana G, Golding BT, Guiard S, Hardcastle IR, Leahy JJ et al. (2005). Selective benzopyranone and pyrimido[2,1-a]isoquinolin-4-one inhibitors of DNA-dependent protein kinase: synthesis, structure-activity studies, and radiosensitization of a human tumor cell line in vitro. J Med Chem 48: 569–585.

    CAS  PubMed  Google Scholar 

  • Gudiksen M, Fleming E, Furstenthal L, Ma P . (2008). What drives success for specialty pharmaceuticals? Nat Rev Drug Discov 7: 563–567.

    CAS  PubMed  Google Scholar 

  • Haince JF, Rouleau M, Hendzel MJ, Masson JY, Poirier GG . (2005). Targeting poly(ADP-ribosyl)ation: a promising approach in cancer therapy. Trends Mol Med 11: 456–463.

    CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    CAS  PubMed  Google Scholar 

  • Hardcastle IR, Cockcroft X, Curtin NJ, El-Murr MD, Leahy JJ, Stockley M et al. (2005). Discovery of potent chromen-4-one inhibitors of the DNA-dependent protein kinase (DNA-PK) using a small-molecule library approach. J Med Chem 48: 7829–7846.

    CAS  PubMed  Google Scholar 

  • Harper JW, Elledge SJ . (2007). The DNA damage response: ten years after. Mol Cell 28: 739–745.

    CAS  PubMed  Google Scholar 

  • Helt CE, Wang W, Keng PC, Bambara RA . (2005). Evidence that DNA damage detection machinery participates in DNA repair. Cell Cycle 4: 529–532.

    CAS  PubMed  Google Scholar 

  • Hong Y, Stambrook PJ . (2004). Restoration of an absent G1 arrest and protection from apoptosis in embryonic stem cells after ionizing radiation. Proc Natl Acad Sci USA 101: 14443–14448.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter AM, LaCasse EC, Korneluk RG . (2007). The inhibitors of apoptosis (IAPs) as cancer targets. Apoptosis 12: 1543–1568.

    CAS  PubMed  Google Scholar 

  • Hurley LH . (2002). DNA and its associated processes as targets for cancer therapy. Nat Rev Cancer 2: 188–200.

    CAS  PubMed  Google Scholar 

  • Iliakis G . (2009). Backup pathways of NHEJ in cells of higher eukaryotes: cell cycle dependence. Radiother Oncol 92: 310–315.

    CAS  PubMed  Google Scholar 

  • Ismail IH, Martensson S, Moshinsky D, Rice A, Tang C, Howlett A et al. (2004). SU11752 inhibits the DNA-dependent protein kinase and DNA double-strand break repair resulting in ionizing radiation sensitization. Oncogene 23: 873–882.

    CAS  PubMed  Google Scholar 

  • Jazayeri A, Falck J, Lukas C, Bartek J, Smith GC, Lukas J et al. (2006). ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol 8: 37–45.

    CAS  PubMed  Google Scholar 

  • Jonathan EC, Bernhard EJ, McKenna WG . (1999). How does radiation kill cells? Curr Opin Chem Biol 3: 77–83.

    CAS  PubMed  Google Scholar 

  • Kartachova M, van Zandwijk N, Burgers S, van Tinteren H, Verheij M, Valdes Olmos RA . (2007). Prognostic significance of 99mTc Hynic-rh-annexin V scintigraphy during platinum-based chemotherapy in advanced lung cancer. J Clin Oncol 25: 2534–2539.

    CAS  PubMed  Google Scholar 

  • Kashishian A, Douangpanya H, Clark D, Schlachter ST, Eary CT, Schiro JG et al. (2003). DNA-dependent protein kinase inhibitors as drug candidates for the treatment of cancer. Mol Cancer Ther 2: 1257–1264.

    CAS  PubMed  Google Scholar 

  • Kass EM, Moynahan ME, Jasin M . (2010). Loss of 53BP1 is a gain for BRCA1 mutant cells. Cancer Cell 17: 423–425.

    CAS  PubMed  Google Scholar 

  • Kelley MR, Fishel ML . (2008). DNA repair proteins as molecular targets for cancer therapeutics. Anticancer Agents Med Chem 8: 417–425.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy RD, D'Andrea AD . (2006). DNA repair pathways in clinical practice: lessons from pediatric cancer susceptibility syndromes. J Clin Oncol 24: 3799–3808.

    CAS  PubMed  Google Scholar 

  • Khanna KK, Jackson SP . (2001). DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27: 247–254.

    CAS  PubMed  Google Scholar 

  • Khanna KK, Shiloh Y . (2009). The DNA Damage Response: Implications on Cancer Formation and Treatment. Springer: Netherlands.

    Google Scholar 

  • Kilic M, Schmitt CA . (2008). Exploiting drug-induced senescence in transgenic mouse models. In: Roninson IB, Brown JM and Bredesen DE (eds). Beyond Apoptosis: Cellular Outcomes of Cancer Therapy pp 273–294.

    Google Scholar 

  • Kim R . (2005). Recent advances in understanding the cell death pathways activated by anticancer therapy. Cancer 103: 1551–1560.

    CAS  PubMed  Google Scholar 

  • Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH et al. (2009). Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16: 3–11.

    CAS  PubMed  Google Scholar 

  • Labi V, Erlacher M, Kiessling S, Villunger A . (2006). BH3-only proteins in cell death initiation, malignant disease and anticancer therapy. Cell Death Differ 13: 1325–1338.

    CAS  PubMed  Google Scholar 

  • LaCasse EC, Mahoney DJ, Cheung HH, Plenchette S, Baird S, Korneluk RG . (2008). IAP-targeted therapies for cancer. Oncogene 27: 6252–6275.

    CAS  PubMed  Google Scholar 

  • Lafarga V, Cuadrado A, Lopez de Silanes I, Bengoechea R, Fernandez-Capetillo O, Nebreda AR . (2009). p38 Mitogen-activated protein kinase- and HuR-dependent stabilization of p21(Cip1) mRNA mediates the G(1)/S checkpoint. Mol Cell Biol 29: 4341–4351.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lazzerini Denchi E, Attwooll C, Pasini D, Helin K . (2005). Deregulated E2F activity induces hyperplasia and senescence-like features in the mouse pituitary gland. Mol Cell Biol 25: 2660–2672.

    PubMed  Google Scholar 

  • Leahy JJ, Golding BT, Griffin RJ, Hardcastle IR, Richardson C, Rigoreau L et al. (2004). Identification of a highly potent and selective DNA-dependent protein kinase (DNA-PK) inhibitor (NU7441) by screening of chromenone libraries. Bioorg Med Chem Lett 14: 6083–6087.

    CAS  PubMed  Google Scholar 

  • Lieberman HB . (2008). DNA damage repair and response proteins as targets for cancer therapy. Curr Med Chem 15: 360–367.

    CAS  PubMed  Google Scholar 

  • Liu L, Kodibagkar VD, Yu JX, Mason RP . (2007). 19F-NMR detection of lacZ gene expression via the enzymic hydrolysis of 2-fluoro-4-nitrophenyl beta-d-galactopyranoside in vivo in PC3 prostate tumor xenografts in the mouse. FASEB J 21: 2014–2019.

    CAS  PubMed  Google Scholar 

  • Ljungman M . (2000). Dial 9-1-1 for p53: mechanisms of p53 activation by cellular stress. Neoplasia 2: 208–225.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lock RB, Stribinskiene L . (1996). Dual modes of death induced by etoposide in human epithelial tumor cells allow Bcl-2 to inhibit apoptosis without affecting clonogenic survival. Cancer Res 56: 4006–4012.

    CAS  PubMed  Google Scholar 

  • Lockshin RA, Zakeri Z . (2008). Historical studies of various forms of cell death. In: Roninson IB, Brown JM and Bredesen DE (eds). Beyond Apoptosis: Cellular Outcomes of Cancer Therapy. pp 55–72.

    Google Scholar 

  • Lord CJ, Ashworth A . (2008). Targeted therapy for cancer using PARP inhibitors. Curr Opin Pharmacol 8: 363–369.

    CAS  PubMed  Google Scholar 

  • Lord CJ, Garrett MD, Ashworth A . (2006). Targeting the double-strand DNA break repair pathway as a therapeutic strategy. Clin Cancer Res 12: 4463–4468.

    CAS  PubMed  Google Scholar 

  • Maddika S, Ande SR, Panigrahi S, Paranjothy T, Weglarczyk K, Zuse A et al. (2007). Cell survival, cell death and cell cycle pathways are interconnected: implications for cancer therapy. Drug Resist Updat 10: 13–29.

    CAS  PubMed  Google Scholar 

  • Mahyar-Roemer M, Roemer K . (2001). p21 Waf1/Cip1 can protect human colon carcinoma cells against p53-dependent and p53-independent apoptosis induced by natural chemopreventive and therapeutic agents. Oncogene 20: 3387–3398.

    CAS  PubMed  Google Scholar 

  • Marone R, Cmiljanovic V, Giese B, Wymann MP . (2008). Targeting phosphoinositide 3-kinase: moving towards therapy. Biochim Biophys Acta 1784: 159–185.

    CAS  PubMed  Google Scholar 

  • Martin RW, Orelli BJ, Yamazoe M, Minn AJ, Takeda S, Bishop DK . (2007). RAD51 up-regulation bypasses BRCA1 function and is a common feature of BRCA1-deficient breast tumors. Cancer Res 67: 9658–9665.

    CAS  PubMed  Google Scholar 

  • Matsuura K, Wakasugi M, Yamashita K, Matsunaga T . (2008). Cleavage-mediated activation of Chk1 during apoptosis. J Biol Chem 283: 25485–25491.

    CAS  PubMed  Google Scholar 

  • Matthews DJ, Yakes FM, Chen J, Tadano M, Bornheim L, Clary DO et al. (2007). Pharmacological abrogation of S-phase checkpoint enhances the anti-tumor activity of gemcitabine in vivo. Cell Cycle 6: 104–110.

    CAS  PubMed  Google Scholar 

  • McCabe N, Lord CJ, Tutt AN, Martin NM, Smith GC, Ashworth A . (2005). BRCA2-deficient CAPAN-1 cells are extremely sensitive to the inhibition of poly (ADP-ribose) polymerase: an issue of potency. Cancer Biol Ther 4: 934–936.

    CAS  PubMed  Google Scholar 

  • McCabe N, Turner NC, Lord CJ, Kluzek K, Bialkowska A, Swift S et al. (2006). Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res 66: 8109–8115.

    CAS  PubMed  Google Scholar 

  • Meulmeester E, Jochemsen AG . (2008). p53: a guide to apoptosis. Curr Cancer Drug Targets 8: 87–97.

    CAS  PubMed  Google Scholar 

  • Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM et al. (2005). BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436: 720–724.

    CAS  PubMed  Google Scholar 

  • Miknyoczki SJ, Jones-Bolin S, Pritchard S, Hunter K, Zhao H, Wan W et al. (2003). Chemopotentiation of temozolomide, irinotecan, and cisplatin activity by CEP-6800, a poly(ADP-ribose) polymerase inhibitor. Mol Cancer Ther 2: 371–382.

    CAS  PubMed  Google Scholar 

  • Mitchell J, Smith GCM, Curtin NJ . (2009). Poly(ADP-Ribose) polymerase-1 and DNA-dependent protein kinase have equivalent roles in double strand break repair following ionizing radiation. 75: 1520–1527.

  • Morgan MA, Parsels LA, Parsels JD, Mesiwala AK, Maybaum J, Lawrence TS . (2005). Role of checkpoint kinase 1 in preventing premature mitosis in response to gemcitabine. Cancer Res 65: 6835–6842.

    CAS  PubMed  Google Scholar 

  • Myer DL, Bahassi el M, Stambrook PJ . (2005). The Plk3-Cdc25 circuit. Oncogene 24: 299–305.

    CAS  PubMed  Google Scholar 

  • Myers K, Gagou ME, Zuazua-Villar P, Rodriguez R, Meuth M . (2009). ATR and Chk1 suppress a caspase-3-dependent apoptotic response following DNA replication stress. PLoS Genet 5: e1000324.

    PubMed  PubMed Central  Google Scholar 

  • Noel G, Godon C, Fernet M, Giocanti N, Megnin-Chanet F, Favaudon V . (2006). Radiosensitization by the poly(ADP-ribose) polymerase inhibitor 4-amino-1,8-naphthalimide is specific of the S phase of the cell cycle and involves arrest of DNA synthesis. Mol Cancer Ther 5: 564–574.

    CAS  PubMed  Google Scholar 

  • O'Connor MJ, Martin NM, Smith GC . (2007). Targeted cancer therapies based on the inhibition of DNA strand break repair. Oncogene 26: 7816–7824.

    CAS  PubMed  Google Scholar 

  • O'Shaughnessy J, Osborne C, Pippen J, Yoffe M, Patt D, Monaghan G et al. (2009). Efficacy of BSI-201, a poly (ADP-ribose) polymerase-1 (PARP1) inhibitor, in combination with gemcitabine/carboplatin (G/C) in patients with metastatic triple-negative breast cancer (TNBC): results of a randomized phase II trial. J Clin Oncol (Meeting Abstracts) 27: 3.

    Google Scholar 

  • Okita N, Kudo Y, Tanuma S . (2007). Checkpoint kinase 1 is cleaved in a caspase-dependent pathway during genotoxic stress-induced apoptosis. Biol Pharm Bull 30: 359–362.

    CAS  PubMed  Google Scholar 

  • Pace P, Mosedale G, Hodskinson MR, Rosado IV, Sivasubramaniam M, Patel KJ . (2010). Ku70 corrupts DNA repair in the absence of the Fanconi anemia pathway. Science 329: 219–223.

    CAS  PubMed  Google Scholar 

  • Parsels LA, Morgan MA, Tanska DM, Parsels JD, Palmer BD, Booth RJ et al. (2009). Gemcitabine sensitization by checkpoint kinase 1 inhibition correlates with inhibition of a Rad51 DNA damage response in pancreatic cancer cells. Mol Cancer Ther 8: 45–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Plummer ER . (2006). Inhibition of poly(ADP-ribose) polymerase in cancer. Curr Opin Pharmacol 6: 364–368.

    CAS  PubMed  Google Scholar 

  • Plummer ER, Calvert H . (2007). Targeting poly(ADP-ribose) polymerase: a two-armed strategy for cancer therapy. Clin Cancer Res 13: 6252–6256.

    CAS  PubMed  Google Scholar 

  • Portugal J, Bataller M, Mansilla S . (2009). Cell death pathways in response to antitumor therapy. Tumori 95: 409–421.

    CAS  PubMed  Google Scholar 

  • Portugal J, Mansilla S, Bataller M . (2010). Mechanisms of drug-induced mitotic catastrophe in cancer cells. Curr Pharm Des 16: 69–78.

    CAS  PubMed  Google Scholar 

  • Powell SN, Bindra RS . (2009). Targeting the DNA damage response for cancer therapy. DNA Repair (Amst) 8: 1153–1165.

    CAS  Google Scholar 

  • Rajaraman R, Guernsey DL, Rajaraman MM, Rajaraman SR . (2006). Stem cells, senescence, neosis and self-renewal in cancer. Cancer Cell Int 6: 25.

    PubMed  PubMed Central  Google Scholar 

  • Ratnam K, Low JA . (2007). Current development of clinical inhibitors of poly(ADP-ribose) polymerase in oncology. Clin Cancer Res 13: 1383–1388.

    CAS  PubMed  Google Scholar 

  • Reed JC . (2006a). Drug insight: cancer therapy strategies based on restoration of endogenous cell death mechanisms. Nat Clin Pract Oncol 3: 388–398.

    CAS  PubMed  Google Scholar 

  • Reed JC . (2006b). Proapoptotic multidomain Bcl-2/Bax-family proteins: mechanisms, physiological roles, and therapeutic opportunities. Cell Death Differ 13: 1378–1386.

    CAS  PubMed  Google Scholar 

  • Reinhardt HC, Aslanian AS, Lees JA, Yaffe MB . (2007). p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer Cell 11: 175–189.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhardt HC, Yaffe MB . (2009). Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. Curr Opin Cell Biol 21: 245–255.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roberson RS, Kussick SJ, Vallieres E, Chen SY, Wu DY . (2005). Escape from therapy-induced accelerated cellular senescence in p53-null lung cancer cells and in human lung cancers. Cancer Res 65: 2795–2803.

    CAS  PubMed  Google Scholar 

  • Robert I, Dantzer F, Reina-San-Martin B . (2009). Parp1 facilitates alternative NHEJ, whereas Parp2 suppresses IgH/c-myc translocations during immunoglobulin class switch recombination. J Exp Med 206: 1047–1056.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez R, Gagou ME, Meuth M . (2008). Apoptosis induced by replication inhibitors in Chk1-depleted cells is dependent upon the helicase cofactor Cdc45. Cell Death Differ 15: 889–898.

    CAS  PubMed  Google Scholar 

  • Rodriguez R, Meuth M . (2006). Chk1 and p21 cooperate to prevent apoptosis during DNA replication fork stress. Mol Biol Cell 17: 402–412.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roninson IB . (2002). Tumor senescence as a determinant of drug response in vivo. Drug Resist Updat 5: 204–208.

    CAS  PubMed  Google Scholar 

  • Roninson IB, Broude EV . (2008). Treatment-induced tumor cell senescence and its consequences. In: Roninson IB, Brown JM and Bredesen DE (eds). Beyond Apoptosis: Cellular Outcomes of Cancer Therapy. pp 223–249.

  • Roninson IB, Broude EV, Chang BD . (2001). If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resist Updat 4: 303–313.

    CAS  PubMed  Google Scholar 

  • Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S . (2004). Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73: 39–85.

    CAS  PubMed  Google Scholar 

  • Sato N, Mizumoto K, Nakamura M, Tanaka M . (2000). Radiation-induced centrosome overduplication and multiple mitotic spindles in human tumor cells. Exp Cell Res 255: 321–326.

    CAS  PubMed  Google Scholar 

  • Schmitt CA, Fridman JS, Yang M, Lee S, Baranov E, Hoffman RM et al. (2002). A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109: 335–346.

    CAS  PubMed  Google Scholar 

  • Shang ZF, Huang B, Xu QZ, Zhang SM, Fan R, Liu XD et al. (2010). Inactivation of DNA-dependent protein kinase leads to spindle disruption and mitotic catastrophe with attenuated checkpoint protein 2 phosphorylation in response to DNA damage. Cancer Res 70: 3657–3666.

    CAS  PubMed  Google Scholar 

  • Shinohara ET, Geng L, Tan J, Chen H, Shir Y, Edwards E et al. (2005). DNA-dependent protein kinase is a molecular target for the development of noncytotoxic radiation-sensitizing drugs. Cancer Res 65: 4987–4992.

    CAS  PubMed  Google Scholar 

  • Shrivastav M, De Haro LP, Nickoloff JA . (2008). Regulation of DNA double-strand break repair pathway choice. Cell Res 18: 134–147.

    CAS  PubMed  Google Scholar 

  • Sidi S, Sanda T, Kennedy RD, Hagen AT, Jette CA, Hoffmans R et al. (2008). Chk1 suppresses a caspase-2 apoptotic response to DNA damage that bypasses p53, Bcl-2, and caspase-3. Cell 133: 864–877.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, George J, Shukla Y . (2010). Role of senescence and mitotic catastrophe in cancer therapy. Cell Div 5: 4.

    PubMed  PubMed Central  Google Scholar 

  • Stiff T, Walker SA, Cerosaletti K, Goodarzi AA, Petermann E, Concannon P et al. (2006). ATR-dependent phosphorylation and activation of ATM in response to UV treatment or replication fork stalling. EMBO J 25: 5775–5782.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Streffer C, van Beuningen D, Gross E, Schabronath J, Eigler FW, Rebmann A . (1986). Predictive assays for the therapy of rectum carcinoma. Radiother Oncol 5: 303–310.

    CAS  PubMed  Google Scholar 

  • Sturgeon CM, Knight ZA, Shokat KM, Roberge M . (2006). Effect of combined DNA repair inhibition and G2 checkpoint inhibition on cell cycle progression after DNA damage. Mol Cancer Ther 5: 885–892.

    CAS  PubMed  Google Scholar 

  • Tao ZF, Lin NH . (2006). Chk1 inhibitors for novel cancer treatment. Anticancer Agents Med Chem 6: 377–388.

    CAS  PubMed  Google Scholar 

  • Taylor BF, McNeely SC, Miller HL, Lehmann GM, McCabe Jr MJ, States JC . (2006). p53 suppression of arsenite-induced mitotic catastrophe is mediated by p21CIP1/WAF1. J Pharmacol Exp Ther 318: 142–151.

    CAS  PubMed  Google Scholar 

  • te Poele RH, Okorokov AL, Jardine L, Cummings J, Joel SP . (2002). DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res 62: 1876–1883.

    CAS  PubMed  Google Scholar 

  • Terzoudi GI, Singh SK, Pantelias GE, Iliakis G . (2008). Premature chromosome condensation reveals DNA-PK independent pathways of chromosome break repair. Int J Oncol 33: 871–879.

    CAS  PubMed  Google Scholar 

  • Thierry B, Al-Ejeh F, Brown MP, Majewski P, Griesser HJ . (2009). Immunotargeting of functional nanoparticles for MRI detection of apoptotic tumor cells. Adv Mater 21: 541–545.

    CAS  PubMed  Google Scholar 

  • Thornton TM, Rincon M . (2009). Non-classical p38 map kinase functions: cell cycle checkpoints and survival. Int J Biol Sci 5: 44–51.

    CAS  PubMed  Google Scholar 

  • Torres K, Horwitz SB . (1998). Mechanisms of Taxol-induced cell death are concentration dependent. Cancer Res 58: 3620–3626.

    CAS  PubMed  Google Scholar 

  • Tounekti O, Pron G, Belehradek Jr J, Mir LM . (1993). Bleomycin, an apoptosis-mimetic drug that induces two types of cell death depending on the number of molecules internalized. Cancer Res 53: 5462–5469.

    CAS  PubMed  Google Scholar 

  • Tse AN, Rendahl KG, Sheikh T, Cheema H, Aardalen K, Embry M et al. (2007). CHIR-124, a novel potent inhibitor of Chk1, potentiates the cytotoxicity of topoisomerase I poisons in vitro and in vivo. Clin Cancer Res 13: 591–602.

    CAS  PubMed  Google Scholar 

  • Tung CH, Zeng Q, Shah K, Kim DE, Schellingerhout D, Weissleder R . (2004). In vivo imaging of beta-galactosidase activity using far red fluorescent switch. Cancer Res 64: 1579–1583.

    CAS  PubMed  Google Scholar 

  • Urist M, Tanaka T, Poyurovsky MV, Prives C . (2004). p73 induction after DNA damage is regulated by checkpoint kinases Chk1 and Chk2. Genes Dev 18: 3041–3054.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vakifahmetoglu H, Olsson M, Tamm C, Heidari N, Orrenius S, Zhivotovsky B . (2008a). DNA damage induces two distinct modes of cell death in ovarian carcinomas. Cell Death Differ 15: 555–566.

    CAS  PubMed  Google Scholar 

  • Vakifahmetoglu H, Olsson M, Zhivotovsky B . (2008b). Death through a tragedy: mitotic catastrophe. Cell Death Differ 15: 1153–1162.

    CAS  PubMed  Google Scholar 

  • Veuger SJ, Curtin NJ, Smith GC, Durkacz BW . (2004). Effects of novel inhibitors of poly(ADP-ribose) polymerase-1 and the DNA-dependent protein kinase on enzyme activities and DNA repair. Oncogene 23: 7322–7329.

    CAS  PubMed  Google Scholar 

  • Waddell N, Arnold J, Cocciardi S, da Silva L, Marsh A, Riley J et al. (2009). Subtypes of familial breast tumours revealed by expression and copy number profiling. Breast Cancer Res Treat (e-pub ahead of print).

  • Walensky LD . (2006). BCL-2 in the crosshairs: tipping the balance of life and death. Cell Death Differ 13: 1339–1350.

    CAS  PubMed  Google Scholar 

  • Wang H, Rosidi B, Perrault R, Wang M, Zhang L, Windhofer F et al. (2005). DNA ligase III as a candidate component of backup pathways of nonhomologous end joining. Cancer Res 65: 4020–4030.

    CAS  PubMed  Google Scholar 

  • Wang M, Wu W, Wu W, Rosidi B, Zhang L, Wang H et al. (2006). PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res 34: 6170–6182.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Ji P, Liu J, Broaddus RR, Xue F, Zhang W . (2009). Centrosome-associated regulators of the G(2)/M checkpoint as targets for cancer therapy. Mol Cancer 8: 8.

    PubMed  PubMed Central  Google Scholar 

  • Widel M, Jedrus S, Owczarek S, Konopacka M, Lubecka B, Kolosza Z . (1999). The increment of micronucleus frequency in cervical carcinoma during irradiation in vivo and its prognostic value for tumour radiocurability. Br J Cancer 80: 1599–1607.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willmore E, de Caux S, Sunter NJ, Tilby MJ, Jackson GH, Austin CA et al. (2004). A novel DNA-dependent protein kinase inhibitor, NU7026, potentiates the cytotoxicity of topoisomerase II poisons used in the treatment of leukemia. Blood 103: 4659–4665.

    CAS  PubMed  Google Scholar 

  • Willmore E, Elliott SL, Mainou-Fowler T, Summerfield GP, Jackson GH, O'Neill F et al. (2008). DNA-dependent protein kinase is a therapeutic target and an indicator of poor prognosis in B-cell chronic lymphocytic leukemia. Clin Cancer Res 14: 3984–3992.

    CAS  PubMed  Google Scholar 

  • Wu W, Wang M, Wu W, Singh SK, Mussfeldt T, Iliakis G . (2008). Repair of radiation induced DNA double strand breaks by backup NHEJ is enhanced in G2. DNA Repair (Amst) 7: 329–338.

    CAS  Google Scholar 

  • Yashige H, Horiike S, Taniwaki M, Misawa S, Abe T . (1999). Micronuclei and nuclear abnormalities observed in erythroblasts in myelodysplastic syndromes and in de novo acute leukemia after treatment. Acta Haematol 101: 32–40.

    CAS  PubMed  Google Scholar 

  • Zhang C, Yan Z, Painter CL, Zhang Q, Chen E, Arango ME et al. (2009). PF-00477736 mediates checkpoint kinase 1 signaling pathway and potentiates docetaxel-induced efficacy in xenografts. Clin Cancer Res 15: 4630–4640.

    CAS  PubMed  Google Scholar 

  • Zhang L, Ming L, Yu J . (2007). BH3 mimetics to improve cancer therapy; mechanisms and examples. Drug Resist Updat 10: 207–217.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Thomas HD, Batey MA, Cowell IG, Richardson CJ, Griffin RJ et al. (2006). Preclinical evaluation of a potent novel DNA-dependent protein kinase inhibitor NU7441. Cancer Res 66: 5354–5362.

    CAS  PubMed  Google Scholar 

  • Zhou BB, Bartek J . (2004). Targeting the checkpoint kinases: chemosensitization versus chemoprotection. Nat Rev Cancer 4: 216–225.

    CAS  PubMed  Google Scholar 

  • Zhou BB, Elledge SJ . (2000). The DNA damage response: putting checkpoints in perspective. Nature 408: 433–439.

    CAS  PubMed  Google Scholar 

  • Zinkel S, Gross A, Yang E . (2006). BCL2 family in DNA damage and cell cycle control. Cell Death Differ 13: 1351–1359.

    CAS  PubMed  Google Scholar 

  • Zolzer F, Alberti W, Pelzer T, Lamberti G, Hulskamp FH, Streffer C . (1995). Changes in S-phase fraction and micronucleus frequency as prognostic factors in radiotherapy of cervical carcinoma. Radiother Oncol 36: 128–132.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Cancer Council NSW (IG 09-04 to FA); The Cure Cancer Foundation Australia (ID 631924 to FA); the Cancer Council SA (ID 631923 to FA); National Health & Medical Research Council Program Grant (ID 442903 to SRL and KKK); and Australian Research Council Grant (ID DP0880372 to KKK)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Al-Ejeh.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Ejeh, F., Kumar, R., Wiegmans, A. et al. Harnessing the complexity of DNA-damage response pathways to improve cancer treatment outcomes. Oncogene 29, 6085–6098 (2010). https://doi.org/10.1038/onc.2010.407

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.407

Keywords

This article is cited by

Search

Quick links