Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Functional RET G691S polymorphism in cutaneous malignant melanoma

Abstract

RET proto-oncogene encodes a receptor tyrosine kinase whose ligand is glial cell line-derived neurotrophic factor (GDNF), and its polymorphism at G691S juxtamembrane region (RETp) is a germline polymorphism. Cutaneous melanomas, particularly the desmoplastic subtype, are highly neurotropic; thus we sought to determine the frequency of RETp in cutaneous melanoma and its functional responsiveness to GDNF. RETp was assessed in 71 non-desmoplastic cutaneous melanomas (non-DMs) and 70 desmoplastic melanomas (DMs). Melanoma cell lines with RETp, RET wild type (RETwt), BRAF V600E mutation (BRAFmt) or BRAF wild type (BRAFwt) were assessed for functional activity. RETp frequency was significantly higher in DMs (61%) than in non-DMs (31%, P<0.001). BRAFmt was detected in only 11% of DMs. GDNF stimulation significantly amplified cell proliferation, migration and invasion in RETp, but not in RETwt melanoma cells. GDNF stimulation of RETp cell lines enhanced phosphorylation of extracellular signal-regulated kinase (ERK) and Akt of the RET-RAS-RAF-ERK and RET-phosphatidylinositol 3-kinase (PI3K)-Akt pathways, respectively. GDNF response of RETp cells in signal transduction and other functional studies were not affected by BRAFmt. The study demonstrates that RETp is frequently found in cutaneous melanoma, particularly desmoplastic subtypes, and responds to GDNF inducing events favorable for tumor progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Airaksinen MS, Saarma M . (2002). The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3: 383–394.

    Article  CAS  PubMed  Google Scholar 

  • Bounacer A, Du Villard JA, Wicker R, Caillou B, Schlumberger M, Sarasin A et al. (2002). Association of RET codon 691 polymorphism in radiation-induced human thyroid tumours with C-cell hyperplasia in peritumoural tissue. Br J Cancer 86: 1929–1936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busam KJ . (2005). Cutaneous desmoplastic melanoma. Adv Anat Pathol 12: 92–102.

    Article  PubMed  Google Scholar 

  • Busam KJ, Zhao H, Coit DG, Kucukgol D, Jungbluth AA, Nobrega J et al. (2005). Distinction of desmoplastic melanoma from non-desmoplastic melanoma by gene expression profiling. J Invest Dermatol 124: 412–418.

    Article  CAS  PubMed  Google Scholar 

  • Carlomagno F, Anaganti S, Guida T, Salvatore G, Troncone G, Wilhelm SM et al. (2006). BAY 43-9006 inhibition of oncogenic RET mutants. J Natl Cancer Inst 98: 326–334.

    Article  CAS  PubMed  Google Scholar 

  • Ceccherini I, Hofstra RM, Luo Y, Stulp RP, Barone V, Stelwagen T et al. (1994). DNA polymorphisms and conditions for SSCP analysis of the 20 exons of the ret proto-oncogene. Oncogene 9: 3025–3029.

    CAS  PubMed  Google Scholar 

  • Curtin JA, Busam K, Pinkel D, Bastian BC . (2006). Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol 24: 4340–4346.

    Article  CAS  PubMed  Google Scholar 

  • Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. (2002). Mutations of the BRAF gene in human cancer. Nature 417: 949–954.

    Article  CAS  PubMed  Google Scholar 

  • Davison JM, Rosenbaum E, Barrett TL, Goldenberg D, Hoque MO, Sidransky D et al. (2005). Absence of V599E BRAF mutations in desmoplastic melanomas. Cancer 103: 788–792.

    Article  CAS  PubMed  Google Scholar 

  • Dhomen N, Marais R . (2007). New insight into BRAF mutations in cancer. Curr Opin Genet Dev 17: 31–39.

    Article  CAS  PubMed  Google Scholar 

  • Elisei R, Cosci B, Romei C, Bottici V, Sculli M, Lari R et al. (2004). RET exon 11 (G691S) polymorphism is significantly more frequent in sporadic medullary thyroid carcinoma than in the general population. J Clin Endocrinol Metab 89: 3579–3584.

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara Y, Chi DD, Wang H, Keleman P, Morton DL, Turner R et al. (1999). Plasma DNA microsatellites as tumor-specific markers and indicators of tumor progression in melanoma patients. Cancer Res 59: 1567–1571.

    CAS  PubMed  Google Scholar 

  • Goto Y, Arigami T, Kitago M, Nguyen SL, Narita N, Ferrone S et al. (2008). Activation of toll-like receptors 2, 3, and 4 on human melanoma cells induces inflammatory factors. Mol Cancer Ther 7: 3642–3653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goto Y, Matsuzaki Y, Kurihara S, Shimizu A, Okada T, Yamamoto K et al. (2006). A new melanoma antigen fatty acid-binding protein 7, involved in proliferation and invasion, is a potential target for immunotherapy and molecular target therapy. Cancer Res 66: 4443–4449.

    Article  CAS  PubMed  Google Scholar 

  • Govindarajan B, Sligh JE, Vincent BJ, Li M, Canter JA, Nickoloff BJ et al. (2007). Overexpression of Akt converts radial growth melanoma to vertical growth melanoma. J Clin Invest 117: 719–729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gumireddy K, Sun F, Klein-Szanto AJ, Gibbins JM, Gimotty PA, Saunders AJ et al. (2007). in vivo selection for metastasis promoting genes in the mouse. Proc Natl Acad Sci USA 104: 6696–6701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoon DS, Kuo CT, Wascher RA, Fournier P, Wang HJ, O'Day SJ . (2001). Molecular detection of metastatic melanoma cells in cerebrospinal fluid in melanoma patients. J Invest Dermatol 117: 375–378.

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto T, Taniguchi M, Asai N, Ohkusu K, Nakashima I, Takahashi M . (1993). cDNA cloning of mouse ret proto-oncogene and its sequence similarity to the cadherin superfamily. Oncogene 8: 1087–1091.

    CAS  PubMed  Google Scholar 

  • Jaroszewski DE, Pockaj BA, DiCaudo DJ, Bite U . (2001). The clinical behavior of desmoplastic melanoma. Am J Surg 182: 590–595.

    Article  CAS  PubMed  Google Scholar 

  • Kodama Y, Asai N, Kawai K, Jijiwa M, Murakumo Y, Ichihara M et al. (2005). The RET proto-oncogene: a molecular therapeutic target in thyroid cancer. Cancer Sci 96: 143–148.

    Article  CAS  PubMed  Google Scholar 

  • Kondo T, Ezzat S, Asa SL . (2006). Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer 6: 292–306.

    Article  CAS  PubMed  Google Scholar 

  • Koyanagi K, O'Day SJ, Gonzalez R, Lewis K, Robinson WA, Amatruda TT et al. (2005). Serial monitoring of circulating melanoma cells during neoadjuvant biochemotherapy for stage III melanoma: outcome prediction in a multicenter trial. J Clin Oncol 23: 8057–8064.

    Article  PubMed  Google Scholar 

  • Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F . (1993). GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260: 1130–1132.

    Article  CAS  PubMed  Google Scholar 

  • Livestro DP, Muzikansky A, Kaine EM, Flotte TJ, Sober AJ, Mihm Jr MC et al. (2005). Biology of desmoplastic melanoma: a case-control comparison with other melanomas. J Clin Oncol 23: 6739–6746.

    Article  PubMed  Google Scholar 

  • Melillo RM, Castellone MD, Guarino V, De Falco V, Cirafici AM, Salvatore G et al. (2005). The RET/PTC-RAS-BRAF linear signaling cascade mediates the motile and mitogenic phenotype of thyroid cancer cells. J Clin Invest 115: 1068–1081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mologni L, Sala E, Cazzaniga S, Rostagno R, Kuoni T, Puttini M et al. (2006). Inhibition of RET tyrosine kinase by SU5416. J Mol Endocrinol 37: 199–212.

    Article  CAS  PubMed  Google Scholar 

  • Plaza-Menacho I, Mologni L, Sala E, Gambacorti-Passerini C, Magee AI, Links TP et al. (2007). Sorafenib functions to potently suppress RET tyrosine kinase activity by direct enzymatic inhibition and promoting RET lysosomal degradation independent of proteasomal targeting. J Biol Chem 282: 29230–29240.

    Article  CAS  PubMed  Google Scholar 

  • Quinn MJ, Crotty KA, Thompson JF, Coates AS, O'Brien CJ, McCarthy WH . (1998). Desmoplastic and desmoplastic neurotropic melanoma: experience with 280 patients. Cancer 83: 1128–1135.

    Article  CAS  PubMed  Google Scholar 

  • Runeberg-Roos P, Saarma M . (2007). Neurotrophic factor receptor RET: structure, cell biology, and inherited diseases. Ann Med 39: 572–580.

    Article  CAS  PubMed  Google Scholar 

  • Satyamoorthy K, Li G, Gerrero MR, Brose MS, Volpe P, Weber BL et al. (2003). Constitutive mitogen-activated protein kinase activation in melanoma is mediated by both BRAF mutations and autocrine growth factor stimulation. Cancer Res 63: 756–759.

    CAS  PubMed  Google Scholar 

  • Sawai H, Okada Y, Kazanjian K, Kim J, Hasan S, Hines OJ et al. (2005). The G691S RET polymorphism increases glial cell line-derived neurotrophic factor-induced pancreatic cancer cell invasion by amplifying mitogen-activated protein kinase signaling. Cancer Res 65: 11536–11544.

    Article  CAS  PubMed  Google Scholar 

  • Selek U, Chang EL, Hassenbusch III SJ, Shiu AS, Lang FF, Allen P et al. (2004). Stereotactic radiosurgical treatment in 103 patients for 153 cerebral melanoma metastases. Int J Radiat Oncol Biol Phys 59: 1097–1106.

    Article  PubMed  Google Scholar 

  • Shinozaki M, Fujimoto A, Morton DL, Hoon DS . (2004). Incidence of BRAF oncogene mutation and clinical relevance for primary cutaneous melanomas. Clin Cancer Res 10: 1753–1757.

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki M, O'Day SJ, Kitago M, Amersi F, Kuo C, Kim J et al. (2007). Utility of circulating B-RAF DNA mutation in serum for monitoring melanoma patients receiving biochemotherapy. Clin Cancer Res 13: 2068–2074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens LA, Powell NG, Grubb J, Jeremiah SJ, Bethel JA, Demidchik EP et al. (2005). Investigation of loss of heterozygosity and SNP frequencies in the RET gene in papillary thyroid carcinoma. Thyroid 15: 100–104.

    Article  CAS  PubMed  Google Scholar 

  • Sumimoto H, Miyagishi M, Miyoshi H, Yamagata S, Shimizu A, Taira K et al. (2004). Inhibition of growth and invasive ability of melanoma by inactivation of mutated BRAF with lentivirus-mediated RNA interference. Oncogene 23: 6031–6039.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M . (2001). The GDNF/RET signaling pathway and human diseases. Cytokine Growth Factor Rev 12: 361–373.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Buma Y, Hiai H . (1989). Isolation of ret proto-oncogene cDNA with an amino-terminal signal sequence. Oncogene 4: 805–806.

    CAS  PubMed  Google Scholar 

  • Takahashi M, Buma Y, Iwamoto T, Inaguma Y, Ikeda H, Hiai H . (1988). Cloning and expression of the ret proto-oncogene encoding a tyrosine kinase with two potential transmembrane domains. Oncogene 3: 571–578.

    CAS  PubMed  Google Scholar 

  • Umetani N, Mori T, Koyanagi K, Shinozaki M, Kim J, Giuliano AE et al. (2005). Aberrant hypermethylation of ID4 gene promoter region increases risk of lymph node metastasis in T1 breast cancer. Oncogene 24: 4721–4727.

    Article  CAS  PubMed  Google Scholar 

  • Weber F, Eng C . (2008). Update on the molecular diagnosis of endocrine tumors: toward -omics-based personalized healthcare? J Clin Endocrinol Metab 93: 1097–1104.

    Article  CAS  PubMed  Google Scholar 

  • Zbuk KM, Eng C . (2007). Cancer phenomics: RET and PTEN as illustrative models. Nat Rev Cancer 7: 35–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Sandy L Nguyen and Linhda Nguyen for expert editorial assistance and Emily H Liang for technical assistance. This work was supported by the National Institutes of Health, National Cancer Institute (Project II P0 CA029605 and CA012582 grants to DH); Ruth and Martin H Weil Foundation (to DH); the Leslie and Susan Gonda Foundation (to DH) and the Melanoma Foundation of the University of Sydney, Australia (to JT, RS, RM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D S Hoon.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narita, N., Tanemura, A., Murali, R. et al. Functional RET G691S polymorphism in cutaneous malignant melanoma. Oncogene 28, 3058–3068 (2009). https://doi.org/10.1038/onc.2009.164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.164

Keywords

Search

Quick links