Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Aurora A overexpression induces cellular senescence in mammary gland hyperplastic tumors developed in p53-deficient mice

Abstract

Aurora A mitotic kinase is frequently overexpressed in various human cancers and is widely considered to be an oncoprotein. However, the cellular contexts in which Aurora A induces malignancy in vivo are still unclear. We previously reported a mouse model in which overexpression of human Aurora A in the mammary gland leads to small hyperplastic changes but not malignancy because of the induction of p53-dependent apoptosis. To study the additional factors required for Aurora A-associated tumorigenesis, we generated a new Aurora A overexpression mouse model that lacks p53. We present evidence here that Aurora A overexpression in primary mouse embryonic fibroblasts (MEFs) that lack p53 overrides postmitotic checkpoint and leads to the formation of multinucleated polyploid cells. Induction of Aurora A overexpression in the mammary glands of p53-deficient mice resulted in development of precancerous lesions that were histologically similar to atypical ductal hyperplasia in human mammary tissue and showed increased cellular senescence and p16 expression. We further observed DNA damage in p53-deficient primary MEFs after Aurora A overexpression. Our results suggest that Aurora A overexpression in mammary glands is insufficient for the development of malignant tumors in p53-deficient mice because of the induction of cellular senescence. Both p53 and p16 are critical in preventing mammary gland tumorigenesis in the Aurora A overexpression mouse model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Anand S, Penrhyn-Lowe S, Venkitaraman AR . (2003). AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell 3: 51–62.

    Article  CAS  Google Scholar 

  • Andreassen PR, Lohez OD, Lacroix FB, Margolis RL . (2001). Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells in G1 . Mol Biol Cell 12: 1315–1328.

    Article  CAS  Google Scholar 

  • Bischoff JR, Anderson L, Zhu Y, Mossie K, Ng L, Souza B et al. (1998). A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J 17: 3052–3065.

    Article  CAS  Google Scholar 

  • Bringold F, Serrano M . (2000). Tumor suppressors and oncogenes in cellular senescence. Exp Gerontol 35: 317–329.

    Article  CAS  Google Scholar 

  • Cahill DP, Kinzler KW, Vogelstein B, Lengauer C . (1999). Genetic instability and darwinian selection in tumours. Trends Cell Biol 9: M57–M60.

    Article  CAS  Google Scholar 

  • Campisi J . (2001). Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol 11: S27–S31.

    Article  CAS  Google Scholar 

  • Chen Q, Fischer A, Reagan JD, Yan LJ, Ames BN . (1995). Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc Natl Acad Sci USA 92: 4337–4341.

    Article  CAS  Google Scholar 

  • Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M et al. (2005). Tumour biology: senescence in premalignant tumours. Nature 436: 642.

    Article  CAS  Google Scholar 

  • Dimri GP, Itahana K, Acosta M, Campisi J . (2000). Regulation of a senescence checkpoint response by the E2F1 transcription factor and p14(ARF) tumor suppressor. Mol Cell Biol 20: 273–285.

    Article  CAS  Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C et al. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92: 9363–9367.

    Article  CAS  Google Scholar 

  • Ferbeyre G, de Stanchina E, Lin AW, Querido E, McCurrach ME, Hannon GJ et al. (2002). Oncogenic ras and p53 cooperate to induce cellular senescence. Mol Cell Biol 22: 3497–3508.

    Article  CAS  Google Scholar 

  • Fujiwara T, Bandi M, Nitta M, Ivanova EV, Bronson RT, Pellman D . (2005). Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437: 1043–1047.

    Article  CAS  Google Scholar 

  • Fukuda T, Mishina Y, Walker MP, DiAugustine RP . (2005). Conditional transgenic system for mouse aurora a kinase: degradation by the ubiquitin proteasome pathway controls the level of the transgenic protein. Mol Cell Biol 25: 5270–5281.

    Article  CAS  Google Scholar 

  • Giet R, Petretti C, Prigent C . (2005). Aurora kinases, aneuploidy and cancer, a coincidence or a real link? Trends Cell Biol 15: 241–250.

    Article  CAS  Google Scholar 

  • Goepfert TM, Adigun YE, Zhong L, Gay J, Medina D, Brinkley WR . (2002). Centrosome amplification and overexpression of aurora A are early events in rat mammary carcinogenesis. Cancer Res 62: 4115–4122.

    CAS  PubMed  Google Scholar 

  • Gritsko TM, Coppola D, Paciga JE, Yang L, Sun M, Shelley SA et al. (2003). Activation and overexpression of centrosome kinase BTAK/Aurora A in human ovarian cancer. Clin Cancer Res 9: 1420–1426.

    CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  Google Scholar 

  • Helmbold H, Deppert W, Bohn W . (2006). Regulation of cellular senescence by Rb2/p130. Oncogene 25: 5257–5262.

    Article  CAS  Google Scholar 

  • Hirota T, Kunitoku N, Sasayama T, Marumoto T, Zhang D, Nitta M et al. (2003). Aurora A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell 114: 585–598.

    Article  CAS  Google Scholar 

  • Howe HL, Wingo PA, Thun MJ, Ries LA, Rosenberg HM, Feigal EG et al. (2001). Annual report to the nation on the status of cancer (1973 through 1998), featuring cancers with recent increasing trends. J Natl Cancer Inst 93: 824–842.

    Article  CAS  Google Scholar 

  • Jeng YM, Peng SY, Lin CY, Hsu HC . (2004). Overexpression and amplification of Aurora A in hepatocellular carcinoma. Clin Cancer Res 10: 2065–2071.

    Article  CAS  Google Scholar 

  • Kallioniemi A, Kallioniemi OP, Piper J, Tanner M, Stokke T, Chen L et al. (1994). Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. Proc Natl Acad Sci USA 91: 2156–2160.

    Article  CAS  Google Scholar 

  • Kanegae Y, Lee G, Sato Y, Tanaka M, Nakai M, Sakaki T et al. (1995). Efficient gene activation in mammalian cells by using recombinant adenovirus expressing site-specific Cre recombinase. Nucleic Acids Res 23: 3816–3821.

    Article  CAS  Google Scholar 

  • Kunitoku N, Sasayama T, Marumoto T, Zhang D, Honda S, Kobayashi O et al. (2003). CENP-A phosphorylation by Aurora A in prophase is required for enrichment of Aurora-B at inner centromeres and for kinetochore function. Dev Cell 5: 853–864.

    Article  CAS  Google Scholar 

  • Lee AC, Fenster BE, Ito H, Takeda K, Bae NS, Hirai T et al. (1999). Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J Biol Chem 274: 7936–7940.

    Article  CAS  Google Scholar 

  • Levine AJ . (1997). p53, the cellular gatekeeper for growth and division. Cell 88: 323–331.

    Article  CAS  Google Scholar 

  • Lundberg AS, Hahn WC, Gupta P, Weinberg RA . (2000). Genes involved in senescence and immortalization. Curr Opin Cell Biol 12: 705–709.

    Article  CAS  Google Scholar 

  • Marumoto T, Honda S, Hara T, Nitta M, Hirota T, Kohmura E et al. (2003). Aurora A kinase maintains the fidelity of early and late mitotic events in HeLa cells. J Biol Chem 278: 51786–51795.

    Article  CAS  Google Scholar 

  • Marumoto T, Zhang D, Saya H . (2005). Aurora A—a guardian of poles. Nat Rev Cancer 5: 42–50.

    Article  CAS  Google Scholar 

  • Meraldi P, Honda R, Nigg EA . (2002). Aurora A overexpression reveals tetraploidization as a major route to centrosome amplification in p53−/− cells. EMBO J 21: 483–492.

    Article  CAS  Google Scholar 

  • Narita M, Nunez S, Heard E, Lin AW, Hearn SA, Spector DL et al. (2003). Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113: 703–716.

    Article  CAS  Google Scholar 

  • Nigg EA . (2001). Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol 2: 21–32.

    Article  CAS  Google Scholar 

  • Robles SJ, Adami GR . (1998). Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts. Oncogene 16: 1113–1123.

    Article  CAS  Google Scholar 

  • Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM . (2005). The antioxidant function of the p53 tumor suppressor. Nat Med 11: 1306–1313.

    Article  CAS  Google Scholar 

  • Sakakura C, Hagiwara A, Yasuoka R, Fujita Y, Nakanishi M, Masuda K et al. (2001). Tumour-amplified kinase BTAK is amplified and overexpressed in gastric cancers with possible involvement in aneuploid formation. Br J Cancer 84: 824–831.

    Article  CAS  Google Scholar 

  • Sen S, Zhou H, White RA . (1997). A putative serine/threonine kinase encoding gene BTAK on chromosome 20q13 is amplified and overexpressed in human breast cancer cell lines. Oncogene 14: 2195–2200.

    Article  CAS  Google Scholar 

  • Serrano M, Lee H, Chin L, Cordon-Cardo C, Beach D, DePinho RA . (1996). Role of the INK4a locus in tumor suppression and cell mortality. Cell 85: 27–37.

    Article  CAS  Google Scholar 

  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88: 593–602.

    Article  CAS  Google Scholar 

  • Symonds H, Krall L, Remington L, Saenz-Robles M, Lowe S, Jacks T et al. (1994). p53-dependent apoptosis suppresses tumor growth and progression in vivo. Cell 78: 703–711.

    Article  CAS  Google Scholar 

  • Tanaka T, Kimura M, Matsunaga K, Fukada D, Mori H, Okano Y . (1999). Centrosomal kinase AIK1 is overexpressed in invasive ductal carcinoma of the breast. Cancer Res 59: 2041–2044.

    CAS  PubMed  Google Scholar 

  • te Poele RH, Okorokov AL, Jardine L, Cummings J, Joel SP . (2002). DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res 62: 1876–1883.

    CAS  Google Scholar 

  • Vafa O, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM et al. (2002). c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell 9: 1031–1044.

    Article  CAS  Google Scholar 

  • Wang X, Zhou YX, Qiao W, Tominaga Y, Ouchi M, Ouchi T et al. (2006). Overexpression of aurora kinase A in mouse mammary epithelium induces genetic instability preceding mammary tumor formation. Oncogene 25: 7148–7158.

    Article  CAS  Google Scholar 

  • Wu X, Levine AJ . (1994). p53 and E2F-1 cooperate to mediate apoptosis. Proc Natl Acad Sci USA 91: 3602–3606.

    Article  CAS  Google Scholar 

  • Zhang D, Hirota T, Marumoto T, Shimizu M, Kunitoku N, Sasayama T et al. (2004). Cre-loxP-controlled periodic Aurora A overexpression induces mitotic abnormalities and hyperplasia in mammary glands of mouse models. Oncogene 23: 8720–8730.

    Article  CAS  Google Scholar 

  • Zhou H, Kuang J, Zhong L, Kuo WL, Gray JW, Sahin A et al. (1998). Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 20: 189–193.

    Article  CAS  Google Scholar 

  • Zhu J, Woods D, McMahon M, Bishop JM . (1998). Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev 12: 2997–3007.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Kimi Araki (Kumamoto University) for providing pCAG-CAT-lacZ plasmid; Mr Takenobu Nakagawa (Kumamoto University) for technical assistance; Dr Izumu Saito and Dr Yumi Kanegae (University of Tokyo) for providing adenoviral luciferase, AxCANCre and p16-expressing adenovirus; Mrs Christine F Wogan (The University of Texas MD Anderson Cancer Center) and Dr Sampetrean Oltea (Kumamoto University) for editorial assistance; members of the Saya laboratory for valuable suggestions and members of the Gene Technology Center at Kumamoto University for their technical assistance. This work was supported by a grant for Cancer Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (to HS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Saya.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D., Shimizu, T., Araki, N. et al. Aurora A overexpression induces cellular senescence in mammary gland hyperplastic tumors developed in p53-deficient mice. Oncogene 27, 4305–4314 (2008). https://doi.org/10.1038/onc.2008.76

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.76

Keywords

This article is cited by

Search

Quick links