Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Positive and negative influences of regulatory T cells on tumour immunity

Abstract

Clinicians and scientists have long questioned whether the immune system has a role in destroying cancerous tissue. Studies performed in animal models have, however, recently revealed that the immune system can, at least in principle, effectively control tumours. In parallel with these findings, a large body of evidence indicates that although the immune system has the capacity to control tumours, there are also regulatory mechanisms that subdue these responses. A major challenge of tumour immunotherapy, therefore, is to find ways of disabling these regulatory functions while restoring or priming any immune responses that are protective.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Antony PA, Piccirillo CA, Akpinarli A, Finkelstein SE, Speiss PJ, Surman DR et al. (2005). CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J Immunol 174: 2591–2601.

    Article  CAS  PubMed  Google Scholar 

  • Apostolou I, Sarukhan A, Klein L, von Boehmer H . (2002). Origin of regulatory T cells with known specificity for antigen. Nat Immunol 3: 756–763.

    Article  CAS  PubMed  Google Scholar 

  • Aschenbrenner K, D'Cruz LM, Vollmann EH, Hinterberger M, Emmerich J, Swee LK et al. (2007). Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nat Immunol 8: 351–358.

    Article  CAS  PubMed  Google Scholar 

  • Asselin-Paturel C, Echchakir H, Carayol G, Gay F, Opolon P, Grunenwald D et al. (1998). Quantitative analysis of Th1, Th2 and TGF-beta1 cytokine expression in tumor, TIL and PBL of non-small cell lung cancer patients. Int J Cancer 77: 7–12.

    Article  CAS  PubMed  Google Scholar 

  • Asseman C, Mauze S, Leach MW, Coffman RL, Powrie F . (1999). An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med 190: 995–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azuma T, Takahashi T, Kunisato A, Kitamura T, Hirai H . (2003). Human CD4+ CD25+ regulatory T cells suppress NKT cell functions. Cancer Res 63: 4516–4520.

    CAS  PubMed  Google Scholar 

  • Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M et al. (2006). Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441: 235–238.

    Article  CAS  PubMed  Google Scholar 

  • Betts G, Twohig J, Van den Broek M, Sierro S, Godkin A, Gallimore A . (2007). The impact of regulatory T cells on carcinogen-induced sarcogenesis. Br J Cancer 96: 1849–1854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Betts GJ, Clarke SL, Richards HE, Godkin AJ, Gallimore AM . (2006). Regulating the immune response to tumours. Adv Drug Deliv Rev 58: 948–961.

    Article  CAS  PubMed  Google Scholar 

  • Beyer M, Kochanek M, Giese T, Endl E, Weihrauch MR, Knolle PA et al. (2006). In vivo peripheral expansion of naive CD4+CD25high FoxP3+ regulatory T cells in patients with multiple myeloma. Blood 107: 3940–3949.

    Article  CAS  PubMed  Google Scholar 

  • Bopp T, Becker C, Klein M, Klein-Hessling S, Palmetshofer A, Serfling E et al. (2007). Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression. J Exp Med 204: 1303–1310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA et al. (2001). Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27: 68–73.

    Article  CAS  PubMed  Google Scholar 

  • Bui JD, Uppaluri R, Hsieh CS, Schreiber RD . (2006). Comparative analysis of regulatory and effector T cells in progressively growing versus rejecting tumors of similar origins. Cancer Res 66: 7301–7309.

    Article  CAS  PubMed  Google Scholar 

  • Chen ML, Pittet MJ, Gorelik L, Flavell RA, Weissleder R, von Boehmer H et al. (2005). Regulatory T cells suppress tumor-specific CD8T cell cytotoxicity through TGF-beta signals in vivo. Proc Natl Acad Sci USA 102: 419–424.

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N et al. (2003). Conversion of peripheral CD4+CD25− naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198: 1875–1886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke SL, Betts GJ, Plant A, Wright KL, El-Shanawany TM, Harrop R et al. (2006). CD4+CD25+FOXP3+ regulatory T cells suppress anti-tumor immune responses in patients with colorectal cancer. PLoS ONE 1: e129.

    Article  PubMed  PubMed Central  Google Scholar 

  • Conrad CT, Ernst NR, Dummer W, Brocker EB, Becker JC . (1999). Differential expression of transforming growth factor beta 1 and interleukin 10 in progressing and regressing areas of primary melanoma. J Exp Clin Cancer Res 18: 225–232.

    CAS  PubMed  Google Scholar 

  • Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P et al. (2004). Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10: 942–949.

    Article  CAS  PubMed  Google Scholar 

  • Curti A, Pandolfi S, Valzasina B, Aluigi M, Isidori A, Ferri E et al. (2007). Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25− into CD25+ T regulatory cells. Blood 109: 2871–2877.

    CAS  PubMed  Google Scholar 

  • Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, Yancey D et al. (2005). Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 115: 3623–3633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darnell RB, Posner JB . (2003). Paraneoplastic syndromes involving the nervous system. N Engl J Med 349: 1543–1554.

    Article  CAS  PubMed  Google Scholar 

  • Davidson TS, DiPaolo RJ, Andersson J, Shevach EM . (2007). Cutting Edge: IL-2 is essential for TGF-beta-mediated induction of Foxp3+ T regulatory cells. J Immunol 178: 4022–4026.

    Article  CAS  PubMed  Google Scholar 

  • Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A et al. (2007). Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204: 1257–1265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derbinski J, Schulte A, Kyewski B, Klein L . (2001). Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol 2: 1032–1039.

    Article  CAS  PubMed  Google Scholar 

  • DiPaolo RJ, Brinster C, Davidson TS, Andersson J, Glass D, Shevach EM . (2007). Autoantigen-specific TGFbeta-induced Foxp3+ regulatory T cells prevent autoimmunity by inhibiting dendritic cells from activating autoreactive T cells. J Immunol 179: 4685–4693.

    Article  CAS  PubMed  Google Scholar 

  • Erdman SE, Poutahidis T, Tomczak M, Rogers AB, Cormier K, Plank B et al. (2003). CD4+ CD25+ regulatory T lymphocytes inhibit microbially induced colon cancer in Rag2-deficient mice. Am J Pathol 162: 691–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erdman SE, Sohn JJ, Rao VP, Nambiar PR, Ge Z, Fox JG et al. (2005). CD4+CD25+ regulatory lymphocytes induce regression of intestinal tumors in ApcMin/+ mice. Cancer Res 65: 3998–4004.

    Article  CAS  PubMed  Google Scholar 

  • Fantini MC, Rizzo A, Fina D, Caruso R, Becker C, Neurath MF et al. (2007). IL-21 regulates experimental colitis by modulating the balance between T(reg) and Th17 cells. Eur J Immunol 37: 3155–3163.

    Article  CAS  PubMed  Google Scholar 

  • Fontenot JD, Gavin MA, Rudensky AY . (2003). Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4: 330–336.

    Article  CAS  PubMed  Google Scholar 

  • Ghiringhelli F, Menard C, Terme M, Flament C, Taieb J, Chaput N et al. (2005a). CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med 202: 1075–1085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghiringhelli F, Puig PE, Roux S, Parcellier A, Schmitt E, Solary E et al. (2005b). Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J Exp Med 202: 919–929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girardi M, Oppenheim DE, Steele CR, Lewis JM, Glusac E, Filler R et al. (2001). Regulation of cutaneous malignancy by gammadelta T cells. Science 294: 605–609.

    Article  CAS  PubMed  Google Scholar 

  • Gondek DC, Lu LF, Quezada SA, Sakaguchi S, Noelle RJ . (2005). Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J Immunol 174: 1783–1786.

    Article  CAS  PubMed  Google Scholar 

  • Hsieh CS, Liang Y, Tyznik AJ, Self SG, Liggitt D, Rudensky AY . (2004). Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors. Immunity 21: 267–277.

    Article  CAS  PubMed  Google Scholar 

  • Ichihara F, Kono K, Takahashi A, Kawaida H, Sugai H, Fujii H . (2003). Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin Cancer Res 9: 4404–4408.

    PubMed  Google Scholar 

  • Itoh M, Takahashi T, Sakaguchi N, Kuniyasu Y, Shimizu J, Otsuka F et al. (1999). Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J Immunol 162: 5317–5326.

    CAS  PubMed  Google Scholar 

  • Jordan MS, Boesteanu A, Reed AJ, Petrone AL, Holenbeck AE, Lerman MA et al. (2001). Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol 2: 301–306.

    Article  CAS  PubMed  Google Scholar 

  • Kearley J, Barker JE, Robinson DS, Lloyd CM . (2005). Resolution of airway inflammation and hyperreactivity after in vivo transfer of CD4+CD25+ regulatory T cells is interleukin 10 dependent. J Exp Med 202: 1539–1547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelchtermans H, De Klerck B, Mitera T, Van Balen M, Bullens D, Billiau A et al. (2005). Defective CD4+CD25+ regulatory T cell functioning in collagen-induced arthritis: an important factor in pathogenesis, counter-regulated by endogenous IFN-gamma. Arthritis Res Ther 7: R402–R415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kryczek I, Grybos M, Karabon L, Klimczak A, Lange A . (2000). IL-6 production in ovarian carcinoma is associated with histiotype and biological characteristics of the tumour and influences local immunity. Br J Cancer 82: 621–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kryczek I, Wei S, Zou L, Altuwaijri S, Szeliga W, Kolls J et al. (2007). Cutting edge: Th17 and regulatory T cell dynamics and the regulation by IL-2 in the tumor microenvironment. J Immunol 178: 6730–6733.

    Article  CAS  PubMed  Google Scholar 

  • La Cava A, Van Kaer L, Fu Dong S . (2006). CD4+CD25+ Tregs and NKT cells: regulators regulating regulators. Trends Immunol 27: 322–327.

    Article  CAS  PubMed  Google Scholar 

  • Langowski JL, Zhang X, Wu L, Mattson JD, Chen T, Smith K et al. (2006). IL-23 promotes tumour incidence and growth. Nature 442: 461–465.

    Article  CAS  PubMed  Google Scholar 

  • Leong PP, Mohammad R, Ibrahim N, Ithnin H, Abdullah M, Davis WC et al. (2006). Phenotyping of lymphocytes expressing regulatory and effector markers in infiltrating ductal carcinoma of the breast. Immunol Lett 102: 229–236.

    Article  CAS  PubMed  Google Scholar 

  • Lewkowicz P, Lewkowicz N, Sasiak A, Tchorzewski H . (2006). Lipopolysaccharide-activated CD4+CD25+ T regulatory cells inhibit neutrophil function and promote their apoptosis and death. J Immunol 177: 7155–7163.

    Article  CAS  PubMed  Google Scholar 

  • Lim HW, Hillsamer P, Banham AH, Kim CH . (2005). Cutting edge: direct suppression of B cells by CD4+ CD25+ regulatory T cells. J Immunol 175: 4180–4183.

    Article  CAS  PubMed  Google Scholar 

  • Liu VC, Wong LY, Jang T, Shah AH, Park I, Yang X et al. (2007). Tumor evasion of the immune system by converting CD4+CD25− T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGF-beta. J Immunol 178: 2883–2892.

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa H, Kato T, Tanida K, Hiasa A, Tawara I, Ikeda H et al. (2003). CD4+ CD25+ T cells responding to serologically defined autoantigens suppress antitumor immune responses. Proc Natl Acad Sci USA 100: 10902–10906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Numasaki M, Fukushi J, Ono M, Narula SK, Zavodny PJ, Kudo T et al. (2003). Interleukin-17 promotes angiogenesis and tumor growth. Blood 101: 2620–2627.

    Article  CAS  PubMed  Google Scholar 

  • Nurieva R, Yang XO, Martinez G, Zhang Y, Panopoulos AD, Ma L et al. (2007). Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448: 480–483.

    Article  CAS  PubMed  Google Scholar 

  • Pacholczyk R, Kern J, Singh N, Iwashima M, Kraj P, Ignatowicz L . (2007). Nonself-antigens are the cognate specificities of Foxp3+ regulatory T cells. Immunity 27: 493–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peluso I, Fantini MC, Fina D, Caruso R, Boirivant M, MacDonald TT et al. (2007). IL-21 counteracts the regulatory T cell-mediated suppression of human CD4+ T lymphocytes. J Immunol 178: 732–739.

    Article  CAS  PubMed  Google Scholar 

  • Piccirillo CA, Shevach EM . (2001). Cutting edge: control of CD8+ T cell activation by CD4+CD25+ immunoregulatory cells. J Immunol 167: 1137–1140.

    Article  CAS  PubMed  Google Scholar 

  • Romagnani C, Della Chiesa M, Kohler S, Moewes B, Radbruch A, Moretta L et al. (2005). Activation of human NK cells by plasmacytoid dendritic cells and its modulation by CD4+ T helper cells and CD4+ CD25hi T regulatory cells. Eur J Immunol 35: 2452–2458.

    Article  CAS  PubMed  Google Scholar 

  • Roncador G, Garcia JF, Maestre L, Lucas E, Menarguez J, Ohshima K et al. (2005). FOXP3, a selective marker for a subset of adult T-cell leukaemia/lymphoma. Leukemia 19: 2247–2253.

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi S . (2004). Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22: 531–562.

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Yang SC, Zhu L, Reckamp K, Gardner B, Baratelli F et al. (2005). Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer Res 65: 5211–5220.

    Article  CAS  PubMed  Google Scholar 

  • Simon AK, Jones E, Richards H, Wright K, Betts G, Godkin A et al. (2007). Regulatory T cells inhibit Fas ligand innate and adaptive immunity. Eur J Immunol 37: 758–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smyth MJ, Dunn GP, Schreiber RD . (2006a). Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol 90: 1–50.

    Article  CAS  PubMed  Google Scholar 

  • Smyth MJ, Teng MW, Swann J, Kyparissoudis K, Godfrey DI, Hayakawa Y . (2006b). CD4+CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer. J Immunol 176: 1582–1587.

    Article  CAS  PubMed  Google Scholar 

  • Somasundaram R, Jacob L, Swoboda R, Caputo L, Song H, Basak S et al. (2002). Inhibition of cytolytic T lymphocyte proliferation by autologous CD4+/CD25+ regulatory T cells in a colorectal carcinoma patient is mediated by transforming growth factor-beta. Cancer Res 62: 5267–5272.

    CAS  PubMed  Google Scholar 

  • Taams LS, van Amelsfort JM, Tiemessen MM, Jacobs KM, de Jong EC, Akbar AN et al. (2005). Modulation of monocyte/macrophage function by human CD4+CD25+ regulatory T cells. Hum Immunol 66: 222–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tadokoro CE, Shakhar G, Shen S, Ding Y, Lino AC, Maraver A et al. (2006). Regulatory T cells inhibit stable contacts between CD4+ T cells and dendritic cells in vivo. J Exp Med 203: 505–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N et al. (2000). Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 192: 303–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Q, Adams JY, Tooley AJ, Bi M, Fife BT, Serra P et al. (2006). Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat Immunol 7: 83–92.

    Article  CAS  PubMed  Google Scholar 

  • Trzonkowski P, Szmit E, Mysliwska J, Dobyszuk A, Mysliwski A . (2004). CD4+CD25+ T regulatory cells inhibit cytotoxic activity of T CD8+ and NK lymphocytes in the direct cell-to-cell interaction. Clin Immunol 112: 258–267.

    Article  CAS  PubMed  Google Scholar 

  • Valzasina B, Piconese S, Guiducci C, Colombo MP . (2006). Tumor-induced expansion of regulatory T cells by conversion of CD4+CD25- lymphocytes is thymus and proliferation independent. Cancer Res 66: 4488–4495.

    Article  CAS  PubMed  Google Scholar 

  • Veldhoen M, Hocking RJ, Flavell RA, Stockinger B . (2006). Signals mediated by transforming growth factor-beta initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat Immunol 7: 1151–1156.

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Tschoi M, Spolski R, Lou Y, Ozaki K, Feng C et al. (2003). In vivo antitumor activity of interleukin 21 mediated by natural killer cells. Cancer Res 63: 9016–9022.

    CAS  PubMed  Google Scholar 

  • Wang HY, Lee DA, Peng G, Guo Z, Li Y, Kiniwa Y et al. (2004). Tumor-specific human CD4+ regulatory T cells and their ligands: implications for immunotherapy. Immunity 20: 107–118.

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Hong J, Sun W, Xu G, Li N, Chen X et al. (2006). Role of IFN-gamma in induction of Foxp3 and conversion of CD4+ CD25− T cells to CD4+ Tregs. J Clin Invest 116: 2434–2441.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, Buist N et al. (2001). X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 27: 18–20.

    Article  CAS  PubMed  Google Scholar 

  • Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD et al. (2007). Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 8: 950–957.

    Article  CAS  PubMed  Google Scholar 

  • Yee C, Thompson JA, Roche P, Byrd DR, Lee PP, Piepkorn M et al. (2000). Melanocyte destruction after antigen-specific immunotherapy of melanoma: direct evidence of t cell-mediated vitiligo. J Exp Med 192: 1637–1644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng R, Spolski R, Finkelstein SE, Oh S, Kovanen PE, Hinrichs CS et al. (2005). Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. J Exp Med 201: 139–148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng SG, Wang J, Wang P, Gray JD, Horwitz DA . (2007). IL-2 is essential for TGF-beta to convert naive CD4+CD25− cells to CD25+Foxp3+ regulatory T cells and for expansion of these cells. J Immunol 178: 2018–2027.

    Article  CAS  PubMed  Google Scholar 

  • Zhou G, Levitsky HI . (2007). Natural regulatory T cells and de novo-induced regulatory T cells contribute independently to tumor-specific tolerance. J Immunol 178: 2155–2162.

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Ivanov II, Spolski R, Min R, Shenderov K, Egawa T et al. (2007). IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 8: 967–974.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

AMG is a Medical Research Council Non-Clinical Senior research Fellow and AKS is funded by the Association for International Cancer Research and by the NIHR Biomedical Research Centre. We thank Nick Willcox and Kerstin Lühn for carefully reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A M Gallimore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallimore, A., Simon, A. Positive and negative influences of regulatory T cells on tumour immunity. Oncogene 27, 5886–5893 (2008). https://doi.org/10.1038/onc.2008.269

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.269

Keywords

This article is cited by

Search

Quick links