Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular association between β-catenin degradation complex and Rac guanine exchange factor DOCK4 is essential for Wnt/β-catenin signaling

Abstract

The canonical Wnt/β-catenin pathway is a highly conserved signaling cascade that is involved in development and stem cell renewal. The deregulation of this pathway is often associated with increased cell growth and neoplasia. The small GTPase Rac has been shown to influence canonical Wnt signaling by regulating β-catenin stability through an unknown mechanism. We report that DOCK4, a guanine nucleotide exchange factor (GEF) for Rac and a member of the CDM family of unconventional GEFs, mediates Wnt-induced Rac activation in the canonical Wnt/β-catenin pathway. DOCK4 expression regulates cellular β-catenin levels in response to the Wnt signal, in vitro. Biochemical studies demonstrate that DOCK4 interacts with the β-catenin degradation complex, consisting of the proteins adenomatosis polyposis coli, Axin and glycogen synthase kinase 3β (GSK3β). This molecular interaction enhances β-catenin stability and Axin degradation. Furthermore, we observe that DOCK4 is phosphorylated by GSK3β, which enhances Wnt-induced Rac activation. Using a T-cell factor reporter zebrafish we confirm that DOCK4 is required for Wnt/β-catenin activity, in vivo. These results elucidate a novel intracellular signaling mechanism in which a Rac GEF, DOCK4 acts as a scaffold protein in the Wnt/β-catenin pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Aberle H, Bauer A, Stappert J, Kispert A, Kemler R . (1997). Beta-catenin is a target for the ubiquitin-proteasome pathway. Embo J 16: 3797–3804.

    Article  CAS  Google Scholar 

  • Amit S, Hatzubai A, Birman Y, Andersen JS, Ben-Shushan E, Mann M et al. (2002). Axin-mediated CKI phosphorylation of beta-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes Dev 16: 1066–1076.

    Article  CAS  Google Scholar 

  • Bhattacharyya R, Noch EK, Khalili K . (2007). A novel role of Rac1 GTPase in JCV T-antigen-mediated beta-catenin stabilization. Oncogene 26: 7628–7636.

    Article  CAS  Google Scholar 

  • Braga VM . (2002). GEF without a Dbl domain? Nat Cell Biol 4: E188–E190.

    Article  CAS  Google Scholar 

  • Brugnera E, Haney L, Grimsley C, Lu M, Walk SF, Tosello-Trampont AC et al. (2002). Unconventional Rac-GEF activity is mediated through the Dock180-ELMO complex. Nat Cell Biol 4: 574–582.

    Article  CAS  Google Scholar 

  • Burridge K, Wennerberg K . (2004). Rho and rac take center stage. Cell 116: 167–179.

    Article  CAS  Google Scholar 

  • Cadigan KM, Liu YI . (2006). Wnt signaling: complexity at the surface. J Cell Sci 119: 395–402.

    Article  CAS  Google Scholar 

  • Clevers H . (2006). Wnt/beta-catenin signaling in development and disease. Cell 127: 469–480.

    Article  CAS  Google Scholar 

  • Cote JF, Motoyama AB, Bush JA, Vuori K . (2005). A novel and evolutionarily conserved PtdIns(3,4,5)P3-binding domain is necessary for DOCK180 signalling. Nat Cell Biol 7: 797–807.

    Article  CAS  Google Scholar 

  • Cote JF, Vuori K . (2002). Identification of an evolutionarily conserved superfamily of DOCK180-related proteins with guanine nucleotide exchange activity. J Cell Sci 115: 4901–4913.

    Article  CAS  Google Scholar 

  • Dorsky RI, Sheldahl LC, Moon RT . (2002). A transgenic Lef1/beta-catenin-dependent reporter is expressed in spatially restricted domains throughout zebrafish development. Dev Biol 241: 229–237.

    Article  CAS  Google Scholar 

  • Esufali S, Bapat B . (2004). Cross-talk between Rac1 GTPase and dysregulated Wnt signaling pathway leads to cellular redistribution of beta-catenin and TCF/LEF-mediated transcriptional activation. Oncogene 23: 8260–8271.

    Article  CAS  Google Scholar 

  • Grimsley CM, Kinchen JM, Tosello-Trampont AC, Brugnera E, Haney LB, Lu M et al. (2003). Dock180 and ELMO1 proteins cooperate to promote evolutionarily conserved Rac-dependent cell migration. J Biol Chem 279: 6087–6097.

    Article  Google Scholar 

  • Ha NC, Tonozuka T, Stamos JL, Choi HJ, Weis WI . (2004). Mechanism of phosphorylation-dependent binding of APC to beta-catenin and its role in beta-catenin degradation. Mol Cell 15: 511–521.

    Article  CAS  Google Scholar 

  • Habas R, Dawid IB, He X . (2003). Coactivation of Rac and Rho by Wnt/Frizzled signaling is required for vertebrate gastrulation. Genes Dev 17: 295–309.

    Article  CAS  Google Scholar 

  • Hagen T, Sethi JK, Foxwell N, Vidal-Puig A . (2004). Signalling activity of beta-catenin targeted to different subcellular compartments. Biochem J 379: 471–477.

    Article  CAS  Google Scholar 

  • Hart MJ, De los Santos R, Albert IN, Rubinfeld B, Polakis P . (1998). Downregulation of beta-catenin by human Axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. Curr Biol 8: 573–581.

    Article  CAS  Google Scholar 

  • Hocevar BA, Mou F, Rennolds JL, Morris SM, Cooper JA, Howe PH . (2003). Regulation of the Wnt signaling pathway by disabled-2 (Dab2). Embo J 22: 3084–3094.

    Article  CAS  Google Scholar 

  • Ilyas M, Tomlinson IP, Rowan A, Pignatelli M, Bodmer WF . (1997). Beta-catenin mutations in cell lines established from human colorectal cancers. Proc Natl Acad Sci USA 94: 10330–10334.

    Article  CAS  Google Scholar 

  • Jope RS, Johnson GV . (2004). The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29: 95–102.

    Article  CAS  Google Scholar 

  • Kang Y, Massague J . (2004). Epithelial–mesenchymal transitions: twist in development and metastasis. Cell 118: 277–279.

    Article  CAS  Google Scholar 

  • Katoh H, Negishi M . (2003). RhoG activates Rac1 by direct interaction with the Dock180-binding protein Elmo. Nature 424: 461–464.

    Article  CAS  Google Scholar 

  • Kimelman D, Xu W . (2006). Beta-catenin destruction complex: insights and questions from a structural perspective. Oncogene 25: 7482–7491.

    Article  CAS  Google Scholar 

  • Link V, Shevchenko A, Heisenberg CP . (2006). Proteomics of early zebrafish embryos. BMC Dev Biol 6: 1.

    Article  Google Scholar 

  • Liu H, Fergusson MM, Castilho RM, Liu J, Cao L, Chen J et al. (2007). Augmented Wnt signaling in a mammalian model of accelerated aging. Science 317: 803–806.

    Article  CAS  Google Scholar 

  • Liu X, Rubin JS, Kimmel AR . (2005). Rapid, Wnt-induced changes in GSK3beta associations that regulate beta-catenin stabilization are mediated by Galpha proteins. Curr Biol 15: 1989–1997.

    Article  CAS  Google Scholar 

  • Lu M, Kinchen JM, Rossman KL, Grimsley C, Hall M, Sondek J et al. (2005). A Steric-inhibition model for regulation of nucleotide exchange via the Dock180 family of GEFs. Curr Biol 15: 371–377.

    Article  CAS  Google Scholar 

  • Luo W, Peterson A, Garcia BA, Coombs G, Kofahl B, Heinrich R et al. (2007). Protein phosphatase 1 regulates assembly and function of the beta-catenin degradation complex. Embo J 26: 1511–1521.

    Article  CAS  Google Scholar 

  • Lyman Gingerich J, Westfall TA, Slusarski DC, Pelegri F . (2005). hecate, a zebrafish maternal effect gene, affects dorsal organizer induction and intracellular calcium transient frequency. Dev Biol 286: 427–439.

    Article  CAS  Google Scholar 

  • Macdonald BT, Semenov MV, He X . (2007). SnapShot: Wnt/beta-catenin signaling. Cell 131: 1204.

    Article  CAS  Google Scholar 

  • Mikels AJ, Nusse R . (2006). Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol 4: e115.

    Article  Google Scholar 

  • Moon RT, Bowerman B, Boutros M, Perrimon N . (2002). The promise and perils of Wnt signaling through beta-catenin. Science 296: 1644–1646.

    Article  CAS  Google Scholar 

  • Schier AF, Talbot WS . (2005). Molecular genetics of Axis formation in zebrafish. Annu Rev Genet 39: 561–613.

    Article  CAS  Google Scholar 

  • Thorpe CJ, Weidinger G, Moon RT . (2005). Wnt/beta-catenin regulation of the Sp1-related transcription factor sp5l promotes tail development in zebrafish. Development 132: 1763–1772.

    Article  CAS  Google Scholar 

  • Veeman MT, Axelrod JD, Moon RT . (2003). A second canon functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell 5: 367–377.

    Article  CAS  Google Scholar 

  • Willert K, Shibamoto S, Nusse R . (1999). Wnt-induced dephosphorylation of axin releases beta-catenin from the axin complex. Genes Dev 13: 1768–1773.

    Article  CAS  Google Scholar 

  • Wu B, Crampton SP, Hughes CC . (2007). Wnt signaling induces matrix metalloproteinase expression and regulates T cell transmigration. Immunity 26: 227–239.

    Article  CAS  Google Scholar 

  • Wu X, Tu X, Joeng KS, Hilton MJ, Williams DA, Long F . (2008). Rac1 activation controls nuclear localization of beta-catenin during canonical Wnt signaling. Cell 133: 340–353.

    Article  CAS  Google Scholar 

  • Xing Y, Clements WK, Kimelman D, Xu W . (2003). Crystal structure of a beta-catenin/axin complex suggests a mechanism for the beta-catenin destruction complex. Genes Dev 17: 2753–2764.

    Article  CAS  Google Scholar 

  • Yajnik V, Paulding C, Sordella R, McClatchey AI, Saito M, Wahrer DC et al. (2003). DOCK4, a GTPase activator, is disrupted during tumorigenesis. Cell 112: 673–684.

    Article  CAS  Google Scholar 

  • Yan D, Li F, Hall ML, Sage C, Hu WH, Giallourakis C et al. (2006). An isoform of GTPase regulator DOCK4 localizes to the stereocilia in the inner ear and binds to harmonin (USH1C). J Mol Biol 357: 755–764.

    Article  CAS  Google Scholar 

  • Yang J, Zhang W, Evans PM, Chen X, He X, Liu C . (2006). APC differentially regulates beta-catenin phosphorylation and ubiquitination in colon cancer cells. J Biol Chem 281: 17751–17757.

    Article  CAS  Google Scholar 

  • Yost C, Torres M, Miller JR, Huang E, Kimelman D, Moon RT . (1996). The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev 10: 1443–1454.

    Article  CAS  Google Scholar 

  • Zeng X, Tamai K, Doble B, Li S, Huang H, Habas R et al. (2005). A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature 438: 873–877.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Lars von Buchholtz (NIH, MD, USA), Parool Meelu (MGH, MA, USA), Tiffany M Blake (Georgetown University, DC, USA) and Denver Matthew Lough (Georgetown University, DC, USA) for the help in the preparation of the paper. This study was supported by grant NIH DK 63933 (VY) and MGH GI unit startup funds (VY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Yajnik.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Upadhyay, G., Goessling, W., North, T. et al. Molecular association between β-catenin degradation complex and Rac guanine exchange factor DOCK4 is essential for Wnt/β-catenin signaling. Oncogene 27, 5845–5855 (2008). https://doi.org/10.1038/onc.2008.202

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.202

Keywords

This article is cited by

Search

Quick links