Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Twist and p53 reciprocally regulate target genes via direct interaction

Abstract

Twist is basic helix-loop-helix transcription factor that binds to E-boxes in gene promoters. Twist possesses an oncogenic function by interfering with the tumor suppressor function of p53. Using a membrane pull-down assay, we found that Twist directly interacts with p53 and that this interaction underlies the inhibitory effects on p53 target gene expression. Twist interacted with the DNA-binding domain of p53 and suppressed the DNA-binding activity of p53. Transcriptional activation of the p21 promoter by p53 was significantly repressed by the expression of Twist. On the other hand, p53 interacted with the N-terminal domain of Twist and repressed Twist-dependent YB-1 promoter activity. Importantly, we found that p53-dependent growth suppression was canceled by the expression of either Twist or YB-1. Thus, our data suggest that Twist inhibits p53 function via a direct interaction with p53.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Alexander NR, Tran NL, Rekapally H, Summers CE, Glackin C, Heimark RL . (2006). N-cadherin gene expression in prostate carcinoma is modulated by integrin-dependent nuclear translocation of Twist1. Cancer Res 66: 3365–3369.

    Article  CAS  PubMed  Google Scholar 

  • Castanon I, Setina SV, Kass J, Baylies MK . (2001). Dimerization partners determine the activity of the Twist bHLH protein during Drosophila mesoderm development. Development 128: 3145–3159.

    CAS  PubMed  Google Scholar 

  • Chen ZF, Behringer RR . (1995). Twist is required in head mesenchyme for cranial neural tube morphogenesis. Genes Dev 15: 686–699.

    Article  Google Scholar 

  • El-Deiry WS, Harper JW, O’Connor PM, Velculescu VE, Canman CE, Jackman J et al. (1995). WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 54: 1169–1174.

    Google Scholar 

  • El Ghouzzi V, Le Merrer M, Perrin-Schmitt F, Lajeunie E, Benit P, Renier D et al. (1997). Mutations of the TWIST gene in the Saethre–Chotzen syndrome. Nat Genet 15: 42–46.

    Article  CAS  PubMed  Google Scholar 

  • Funato N, Ohtani K, Ohyama K, Kuroda T, Nakamura M . (2001). Common regulation of growth arrest and differentiation of osteoblasts by helix-loop-helix factors. Mol Cell Biol 21: 7416–7428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamamori Y, Sartorelli V, Ogryzko V, Puri PL, Wu HY, Wang JY et al. (1999). Regulation of histone acetyltransferases p300 and PCAF by the bHLH protein Twist and adenoviral oncoprotein E1A. Cell 96: 405–413.

    Article  CAS  PubMed  Google Scholar 

  • Hamamori Y, Wu HY, Sartorelli V, Kedes L . (1997). The basic domain of myogenic basic helix-loop-helix (bHLH) proteins is the noble target for direct inhibition by another bHLH protein, Twist. Mol Cell Biol 17: 6563–6573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howard TD, Paznekas WA, Green ED, Chiang L, Ma N, Ortiz De Luna RI et al. (1997). Mutations in TWIST, a basic helix-loop-helix transcription factor, in Saethre–Chotzen syndrome. Nat Genet 15: 36–41.

    Article  PubMed  Google Scholar 

  • Igarashi T, Izumi H, Uchiumi T, Nishio T, Arao T, Tanabe M et al. (2007). Clock and ATF4 transcription system regulates drug resistance in human cancer cell lines. Oncogene 26: 4749–4760.

    Article  CAS  PubMed  Google Scholar 

  • Imamura T, Izumi H, Nagatani G, Ise T, Nomoto M, Iwamoto Y et al. (2001). Interaction with p53 enhances binding of cisplatin-modified DNA by high mobility group 1 protein. J Biol Chem 276: 7534–7540.

    Article  CAS  PubMed  Google Scholar 

  • Izumi H, Imamura T, Nagatani G, Ise T, Murakami T, Uramoto H et al. (2001). Y box-binding protein-1 binds preferentially to single-stranded nucleic acids and exhibits 3′ → 5′ exonuclease activity. Nucleic Acids Res 29: 1200–1207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izumi H, Ohta R, Nagatani G, Ise T, Nakayama Y, Nomoto M et al. (2003). p300/CBP-associated factor (P/CAF) interacts with nuclear respiratory factor-1 to regulate the UDP-N-acetyl-α-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase-3 gene. Biochem J 373: 713–722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayaraman L, Moorthy NC, Murthy KG, Manley JL, Bustin M, Prives C . (1998). High mobility group protein-1 (HMG-1) is a unique activator of p53. Genes Dev 12: 462–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A et al. (1997). Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90: 809–819.

    Article  CAS  PubMed  Google Scholar 

  • Kohno K, Uchiumi T, Niina I, Wakasugi T, Igarashi T, Momii Y et al. (2005). Transcription factors and drug resistance. Eur J Cancer 41: 2577–2586.

    Article  CAS  PubMed  Google Scholar 

  • Lee YM, Park T, Schulz RA, Kim Y . (1997). Twist-mediated activation of the NK-4 homeobox gene in the visceral mesoderm of Drosophila requires two distinct clusters of E-box regulatory elements. J Biol Chem 272: 17531–17541.

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Scolnick DM, Trievel RC, Zhang HB, Marmorstein R, Halazonetis TD et al. (1999). p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol 19: 1202–1209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maestro R, Dei Tos AP, Hamamori Y, Krasnokutsky S, Sartorelli V, Kedes L et al. (1999). Twist is a potential oncogene that inhibits apoptosis. Genes Dev 13: 2207–2217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohga T, Koike K, Ono M, Makino Y, Itagaki Y, Tanimoto M et al. (1996). Role of the human Y box-binding protein YB-1 in cellular sensitivity to the DNA-damaging agents cisplatin, mitomycin C, and ultraviolet light. Cancer Res 56: 4224–4228.

    CAS  PubMed  Google Scholar 

  • Okamoto T, Izumi H, Imamura T, Takano H, Ise T, Uchiumi T et al. (2000). Direct interaction of p53 with the Y-box binding protein, YB-1: a mechanism for regulation of human gene expression. Oncogene 19: 6194–6202.

    Article  CAS  PubMed  Google Scholar 

  • Quertermous EE, Hidai H, Blanar MA, Quertermous T . (1994). Cloning and characterization of a basic helix-loop-helix protein expressed in early mesoderm and the developing somites. Proc Natl Acad Sci USA 91: 7066–7070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiota M, Izumi H, Onitsuka T, Miyamoto N, Kashiwagi E, Kidani A et al. (2008). Twist promotes tumor cell growth through YB-1 expression. Cancer Res 68: 98–105.

    Article  CAS  PubMed  Google Scholar 

  • Soo K, O’Rourke MP, Khoo PL, Steiner KA, Wong N, Behringer RR et al. (2002). Twist function is required for the morphogenesis of the cephalic neural tube and the differentiation in the mouse embryo. Dev Biol 247: 251–270.

    Article  CAS  PubMed  Google Scholar 

  • Stasinopoulos IA, Mironchik Y, Raman A, Wildes F, Winnard P, Raman V . (2005). HOXA5-Twist interaction alters p53 homeostasis in breast cancer cells. J Biol Chem 280: 2294–2299.

    Article  CAS  PubMed  Google Scholar 

  • Thisse B, Stoetzel C, Gorostiza-Thisse C, Perrin-Schmitt F . (1988). Sequence of the twist gene and nuclear localization of its protein in endomesodermal cells of early Drosophila embryos. EMBO J 7: 2175–2183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torigoe T, Izumi H, Ishiguchi H, Yoshida Y, Tanabe M, Yoshida T et al. (2005). Cisplatin resistance and transcription factors. Curr Med Chem Anticancer Agents 5: 15–27.

    Article  CAS  PubMed  Google Scholar 

  • Uramoto H, Izumi H, Ise T, Tada M, Uchiumi T, Kuwano M et al. (2002). p73 interacts with c-Myc to regulate Y-box-binding protein-1 expression. J Biol Chem 227: 31694–31702.

    Article  Google Scholar 

  • Uramoto H, Izumi H, Nagatani G, Ohmori H, Nagasue N, Ise T et al. (2003). Physical interaction of tumour suppressor p53/p73 with CCAAT-binding transcription factor 2 (CTF2) and differential regulation of human high-mobility group 1 (HMG1) gene expression. Biochem J 371: 301–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valsesia-Wittmann S, Magdeleine M, Dupasquier S, Garin E, Jallas AC, Combaret V et al. (2004). Oncogenic cooperation between H-Twist and N-Myc overrides failsafe programs in cancer cells. Cancer Cell 6: 625–630.

    Article  CAS  PubMed  Google Scholar 

  • Wakasugi T, Izumi H, Uchiumi T, Suzuki H, Arao T, Nishio K et al. (2007). ZNF143 interacts with p73 and is involved in cisplatin resistance through the transcriptional regulation of DNA repair genes. Oncogene 26: 5194–5203.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Ling MT, Guan XY, Tsao SW, Cheung HW, Lee DT et al. (2004). Identification of a novel function of TWIST1, bHLH protein, in the development of acquired taxol resistance in human cancer cells. Oncogene 23: 474–482.

    Article  PubMed  Google Scholar 

  • Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C et al. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117: 927–939.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Ministry of Education, Culture, Sports, Science, and Technology of Japan (Mext), Kakenhi (13218132 and 17590257), the Kobayashi Institute for Innovative Cancer Chemotherapy and a grant-in-aid for Cancer Research from the Fukuoka Cancer Society, Japan. We thank Satoko Takazaki and Yukiko Yoshiura for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Kohno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiota, M., Izumi, H., Onitsuka, T. et al. Twist and p53 reciprocally regulate target genes via direct interaction. Oncogene 27, 5543–5553 (2008). https://doi.org/10.1038/onc.2008.176

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.176

Keywords

This article is cited by

Search

Quick links