Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mapping the interaction of DNA with the Escherichia coli DNA polymerase clamp loader complex

Abstract

Sliding clamps are loaded onto DNA by ATP-dependent clamp loader complexes. A recent crystal structure of a clamp loader–clamp complex suggested an unexpected mechanism for DNA recognition, in which the ATPase subunits of the loader spiral around primed DNA. We report the results of fluorescence-based assays that probe the mechanism of the Escherichia coli clamp loader and show that conserved residues clustered within the inner surface of the modeled clamp loader spiral are critical for DNA recognition, DNA-dependent ATPase activity and clamp release. Duplex DNA with a 5′-overhang single-stranded region (corresponding to correctly primed DNA) stimulates clamp release, as does blunt-ended duplex DNA, whereas duplex DNA with a 3′ overhang and single-stranded DNA are ineffective. These results provide evidence for the recognition of DNA within an inner chamber formed by the spiral organization of the ATPase domains of the clamp loader.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model for a ternary complex of the E. coli clamp loader, clamp and nucleic acid derived from the structure of the RFC–PCNA complex19.
Figure 2: Effects of γBCD mutants.
Figure 3: DNA-binding affinity for γBCD mutants.
Figure 4: Effects of δ′E mutants.
Figure 5: Specificity of DNA-stimulated clamp release.
Figure 6: DNA competition assays with hairpin DNAs measured by fluorescence anisotropy.
Figure 7

Similar content being viewed by others

References

  1. O'Donnell, M. & Studwell, P.S. Total reconstitution of DNA polymerase III holoenzyme reveals dual accessory protein clamps. J. Biol. Chem. 265, 1179–1187 (1990).

    CAS  PubMed  Google Scholar 

  2. Stukenberg, P.T., Studwell-Vaughan, P.S. & O'Donnell, M. Mechanism of the sliding β-clamp of DNA polymerase III holoenzyme. J. Biol. Chem. 266, 11328–11334 (1991).

    CAS  PubMed  Google Scholar 

  3. Kong, X.P., Onrust, R., O'Donnell, M. & Kuriyan, J. Three-dimensional structure of the beta subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp. Cell 69, 425–437 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Waga, S. & Stillman, B. Anatomy of a DNA replication fork revealed by reconstitution of SV40 DNA replication in vitro. Nature 369, 207–212 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Hacker, K.J. & Alberts, B.M. The slow dissociation of the T4 DNA polymerase holoenzyme when stalled by nucleotide omission. An indication of a highly processive enzyme. J. Biol. Chem. 269, 24209–24220 (1994).

    CAS  PubMed  Google Scholar 

  6. Krishna, T.S.R., Kong, X.-P., Gary, S., Burgers, P. & Kuriyan, J. Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell 79, 1233–1243 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Kelman, Z. & O'Donnell, M. DNA polymerase III holoenzyme: Structure and function of a chromosomal replicating machine. Annu. Rev. Biochem. 64, 171–200 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Waga, S. & Stillman, B. The DNA replication fork in eukaryotic cells. Annu. Rev. Biochem. 67, 721–751 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Cann, I.K. & Ishino, Y. Archaeal DNA replication: identifying the pieces to solve a puzzle. Genetics 152, 1249–1267 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Guenther, B.D., Onrust, R., Sali, A., O'Donnell, M. & Kuriyan, J. Crystal structure of the δ′ subunit of the clamp-loader complex of E. coli DNA polymerase III. Cell 91, 335–345 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Lupas, A.N. & Martin, J. AAA proteins. Curr. Opin. Struct. Biol. 12, 746–753 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Neuwald, A.F., Aravind, L., Spouge, J.L. & Koonin, E.V. AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9, 27–43 (1999).

    CAS  PubMed  Google Scholar 

  13. Stewart, J., Hingorani, M.M., Kelman, Z. & O'Donnell, M. Mechanism of β clamp opening by the δ subunit of Escherichia coli DNA polymerase III holoenzyme. J. Biol. Chem. 276, 19182–19189 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Onrust, R., Stukenberg, P.T. & O'Donnell, M. Analysis of the ATPase subassembly which initiates processive DNA synthesis by DNA polymerase. J. Biol. Chem. 266, 21681–21686 (1991).

    CAS  PubMed  Google Scholar 

  15. Tsurimoto, T. & Stillman, B. Replication factors required for SV40 DNA replication in vitro. I. DNA structure-specific recognition of a primer-template junction by eukaryotic DNA polymerases and their accessory proteins. J. Biol. Chem. 266, 1950–1960 (1991).

    CAS  PubMed  Google Scholar 

  16. Yao, N., Leu, F.P., Anjelkovic, J., Turner, J. & O'Donnell, M. DNA structure requirements for the Escherichia coli γ complex clamp loader and DNA polymerase III holoenzyme. J. Biol. Chem. 275, 11440–11450 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Jeruzalmi, D., O'Donnell, M. & Kuriyan, J. Crystal structure of the processivity clamp loader γ complex of E. coli DNA polymerase III. Cell 106, 429–441 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Oyama, T., Ishino, Y., Cann, I.K., Ishino, S. & Morikawa, K. Atomic structure of the clamp loader small subunit from Pyrococcus furiosus. Mol. Cell 8, 455–463 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Bowman, G.D., O'Donnell, M. & Kuriyan, J. Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex. Nature 429, 724–730 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Kazmirski, S.P., Podobnik, M., Weitze, T.F., O'Donnell, M. & Kuriyan, J. Structural analysis of the inactive state of the Escherichia coli DNA polymerase clamp-loader complex. Proc. Natl. Acad. Sci. USA 101, 16750–16755 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jeruzalmi, D., O'Donnell, M. & Kuriyan, J. Clamp loaders and sliding clamps. Curr. Opin. Struct. Biol. 12, 217–224 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Naktinis, V., Onrust, R., Fang, L. & O'Donnell, M. Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. II. Intermediate complex between the clamp loader and its clamp. J. Biol. Chem. 270, 13358–13365 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Leu, F.P. & O'Donnell, M. Interplay of clamp loader subunits in opening the beta sliding clamp of Escherichia coli DNA polymerase III holoenzyme. J. Biol. Chem. 276, 47185–47194 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Turner, J., Hingorani, M.M., Kelman, Z. & O'Donnell, M. The internal workings of a DNA polymerase clamp-loading machine. EMBO J. 18, 771–783 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Goedken, E.R. et al. Fluorescence measurements on the E. coli DNA polymerase clamp loader: implications for conformational changes during ATP and clamp binding. J. Mol. Biol. 336, 1047–1059 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Jeruzalmi, D. et al. Mechanism of processivity clamp opening by the δ subunit wrench of the clamp loader complex of E. coli DNA polymerase III. Cell 106, 417–428 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Haugland, R.P. Handbook of Fluorescent Probes and Research Products 9th edn. (Molecular Probes, Eugene, Oregon, USA, 2002).

    Google Scholar 

  28. Bertram, J.G. et al. Pre-steady state analysis of the assembly of wild type and mutant circular clamps of Escherichia coli DNA polymerase III onto DNA. J. Biol. Chem. 273, 24564–24574 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Ason, B. et al. Mechanism of loading the Escherichia coli DNA polymerase III beta sliding clamp on DNA: Bona fide primer/templates preferentially trigger the γ complex to hydrolyze ATP and load the clamp. J. Biol. Chem. 278, 10033–10040 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Combeau, C. & Carlier, M.F. Probing the mechanism of ATP hydrolysis on F-actin using vanadate and the structural analogs of phosphate BeF-3 and A1F-4. J. Biol. Chem. 263, 17429–17436 (1988).

    CAS  PubMed  Google Scholar 

  31. Chabre, M. Aluminofluoride and beryllofluoride complexes: a new phosphate analogs in enzymology. Trends Biochem. Sci. 15, 6–10 (1990).

    Article  CAS  PubMed  Google Scholar 

  32. Fisher, A.J. et al. X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP.BeFx and MgADP.AlF4. Biochemistry 34, 8960–8972 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Park, S., Ajtai, K. & Burghardt, T.P. Mechanism for coupling free energy in ATPase to the myosin active site. Biochemistry 36, 3368–3372 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Kagawa, R., Montgomery, M.G., Braig, K., Leslie, A.G. & Walker, J.E. The structure of bovine F(1)-ATPase inhibited by ADP and beryllium fluoride. EMBO J. 23, 2734–2744 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Johnson, A. & O'Donnell, M. Ordered ATP hydrolysis in the γ complex clamp loader AAA+ machine. J. Biol. Chem. 278, 14406–14413 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Snyder, A.K., Williams, C.R., Johnson, A., O'Donnell, M. & Bloom, L.B. Mechanism of loading the Escherichia coli DNA polymerase III sliding clamp: II. Uncoupling the β and DNA binding activities of the γ complex. J. Biol. Chem. 279, 4386–4393 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Haran, T.E., Joachimiak, A. & Sigler, P.B. The DNA target of the trp repressor. EMBO J. 11, 3021–3030 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ellison, V. & Stillman, B. Biochemical characterization of DNA damage checkpoint complexes: clamp loader and clamp complexes with specificity for 5′ recessed DNA. PLoS Biol. 1, 231–243 (2003).

    Article  CAS  Google Scholar 

  39. Miyata, T. et al. The clamp-loading complex for processive DNA replication. Nat. Struct. Mol. Biol. 11, 632–636 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. O'Donnell, M., Jeruzalmi, D. & Kuriyan, J. Clamp loader structure predicts the architecture of DNA polymerase III holoenzyme and RFC. Curr. Biol. 11, R935–R946. (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Barker, S.C. et al. Characterization of pp60c-src tyrosine kinase activities using a continuous assay: autoactivation of the enzyme is an intermolecular autophosphorylation process. Biochemistry 34, 14843–14851 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Henikoff, S. & Henikoff, J.G. Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 89, 10915–10919 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully recognize the assistance of X. Cao for DNA mutagenesis, L. Leighton for the creation of illustrations, and M. Levitus, R. McNally, M. Lamers, J. Guenther, O. Rosenberg and H. Sondermann for helpful discussions. This work was supported by an American Cancer Society postdoctoral fellowship to E.R.G., and by grants from the US National Institutes of Health to J.K. (GM45547) and M.O.D. (GM38839).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Kuriyan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

FRET controls. (PDF 511 kb)

Supplementary Fig. 2

δ raw FRET data. (PDF 547 kb)

Supplementary Fig. 3

δ ATPase data. (PDF 572 kb)

Supplementary Fig. 4

Alternate hairpin DNA competition. (PDF 162 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goedken, E., Kazmirski, S., Bowman, G. et al. Mapping the interaction of DNA with the Escherichia coli DNA polymerase clamp loader complex. Nat Struct Mol Biol 12, 183–190 (2005). https://doi.org/10.1038/nsmb889

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb889

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing