Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Streptomycin interferes with conformational coupling between codon recognition and GTPase activation on the ribosome

Abstract

Aminoacyl-tRNAs (aa-tRNAs) are selected by the ribosome through a kinetically controlled induced fit mechanism. Cognate codon recognition induces a conformational change in the decoding center and a domain closure of the 30S subunit. We studied how these global structural rearrangements are related to tRNA discrimination by using streptomycin to restrict the conformational flexibility of the 30S subunit. The antibiotic stabilized aa-tRNA on the ribosome both with a cognate and with a near-cognate codon in the A site. Streptomycin altered the rates of GTP hydrolysis by elongation factor Tu (EF-Tu) on cognate and near-cognate codons, resulting in almost identical rates of GTP hydrolysis and virtually complete loss of selectivity. These results indicate that movements within the 30S subunit at the streptomycin-binding site are essential for the coupling between base pair recognition and GTP hydrolysis, thus modulating the fidelity of aa-tRNA selection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kinetic scheme of EF-Tu-dependent aa-tRNA binding to the ribosomal A site.
Figure 2: Effect of streptomycin on the kinetics of A-site binding.
Figure 3: Effect of streptomycin and paromomycin on GTP hydrolysis.
Figure 4: Discrimination of aa-tRNA.

Similar content being viewed by others

References

  1. Rodnina, M.V. & Wintermeyer, W. Fidelity of aminoacyl-tRNA selection on the ribosome: kinetic and structural mechanisms. Annu. Rev. Biochem. 70, 415–435 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Ogle, J.M. et al. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292, 897–902 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Pape, T., Wintermeyer, W. & Rodnina, M.V. Induced fit in initial selection and proofreading of aminoacyl-tRNA on the ribosome. EMBO J. 18, 3800–3807 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pape, T., Wintermeyer, W. & Rodnina, M.V. Conformational switch in the decoding region of 16S rRNA during aminoacyl-tRNA selection on the ribosome. Nat. Struct. Biol. 7, 104–107 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Ogle, J.M., Murphy, F.V., Tarry, M.J. & Ramakrishnan, V. Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111, 721–732 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Carter, A.P. et al. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407, 340–348 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Ogle, J.M., Carter, A.P. & Ramakrishnan, V. Insights into the decoding mechanism from recent ribosome structures. Trends Biochem. Sci. 28, 259–266 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Karimi, R. & Ehrenberg, M. Dissociation rate of cognate peptidyl-tRNA from the A-site of hyper-accurate and error-prone ribosomes. Eur. J. Biochem. 226, 355–360 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Ruusala, T. & Kurland, C.G. Streptomycin preferentially perturbs ribosomal proofreading. Mol. Gen. Genet. 198, 100–104 (1984).

    Article  CAS  PubMed  Google Scholar 

  10. Gromadski, K.B. & Rodnina, M.V. Kinetic determinants of high-fidelity tRNA discrimination on the ribosome. Mol. Cell 13, 191–200 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Rodnina, M.V., Pape, T., Fricke, R., Kuhn, L. & Wintermeyer, W. Initial binding of the elongation factor Tu–GTP–aminoacyl-tRNA complex preceding codon recognition on the ribosome. J. Biol. Chem. 271, 646–652 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Pape, T., Wintermeyer, W. & Rodnina, M.V. Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome. EMBO J. 17, 7490–7497 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Daviter, T., Wieden, H.-J. & Rodnina, M.V. Essential role of histidine 84 in elongation factor Tu for the chemical step of GTP hydrolysis on the ribosome. J. Mol. Biol. 332, 689–699 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Rodnina, M.V., Fricke, R., Kuhn, L. & Wintermeyer, W. Codon-dependent conformational change of elongation factor Tu preceding GTP hydrolysis on the ribosome. EMBO J. 14, 2613–2619 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Thompson, R.C., Dix, D.B., Gerson, R.B. & Karim, A.M. Effect of Mg2+ concentration, polyamines, streptomycin, and mutations in ribosomal proteins on the accuracy of the two-step selection of aminoacyl-tRNAs in protein biosynthesis. J. Biol. Chem. 256, 6676–6681 (1981).

    CAS  PubMed  Google Scholar 

  16. Lando, D., Cousin, M.A., Ojasoo, T. & Raymond, J.P. Paromomycin and dihydrostreptomycin binding to Escherichia coli ribosomes. Eur. J. Biochem. 66, 597–606 (1976).

    Article  CAS  PubMed  Google Scholar 

  17. Bilgin, N. & Ehrenberg, M. Mutations in 23 S ribosomal RNA perturb transfer RNA selection and can lead to streptomycin dependence. J. Mol. Biol. 235, 813–824 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Grise-Miron, L., Noreau, J., Melancon, P. & Brakier-Gingras, L. Comparison of the misreading induced by streptomycin and neomycin. Biochim. Biophys. Acta 656, 103–110 (1981).

    Article  CAS  PubMed  Google Scholar 

  19. Yates, J.L. Role of ribosomal protein S12 in discrimination of aminoacyl-tRNA. J. Biol. Chem. 254, 11550–11554 (1979).

    CAS  PubMed  Google Scholar 

  20. Campuzano, S., Cabanas, M.J. & Modolell, J. The binding of non-cognate Tyr-tRNATyr to poly(uridylic acid)-programmed Escherichia coli ribosomes. Eur. J. Biochem. 100, 133–139 (1979).

    Article  CAS  PubMed  Google Scholar 

  21. Fersht, A. Structure and Mechanism in Protein Science 630 (Freeman, New York, 1998).

    Google Scholar 

  22. Ehrenberg, M., Bilgin, N. & Kurland, C.G. Design and use of a fast and accurate in vitro translation system. In Ribosomes and Protein Biosynthesis. The Practical Approach Series (ed. Spedding, G.) 101–129 (IRL, Oxford, 1990).

    Google Scholar 

  23. Thompson, R.C. & Stone, P.J. Proofreading of the codon-anticodon interaction on ribosomes. Proc. Natl. Acad. Sci. USA 74, 198–202 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Belanger, F., Leger, M., Saraiya, A.A., Cunningham, P.R. & Brakier-Gingras, L. Functional studies of the 900 tetraloop capping helix 27 of 16S ribosomal RNA. J. Mol. Biol. 320, 979–989 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. O'Connor, M., Thomas, C.L., Zimmermann, R.A. & Dahlberg, A.E. Decoding fidelity at the ribosomal A and P sites: influence of mutations in three different regions of the decoding domain in 16S rRNA. Nucleic Acids Res. 25, 1185–1193 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gregory, S.T., Bayfield, M.A., O'Connor, M., Thompson, J. & Dahlberg, A.E. Probing ribosome structure and function by mutagenesis. Cold Spring Harb. Symp. Quant. Biol. 66, 101–108 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Gregory, S.T., Cate, J.H. & Dahlberg, A.E. Streptomycin-resistant and streptomycin-dependent mutants of the extreme thermophile Thermus thermophilus. J. Mol. Biol. 309, 333–338 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Robert, F. & Brakier-Gingras, L. A functional interaction between ribosomal proteins S7 and S11 within the bacterial ribosome. J. Biol. Chem. 278, 44913–44920 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Vila-Sanjurjo, A. et al. X-ray crystal structures of the WT and a hyper-accurate ribosome from Escherichia coli. Proc. Natl. Acad. Sci. USA 100, 8682–8687 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stark, H. et al. Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon recognition complex. Nat. Struct. Biol. 9, 849–854 (2002).

    CAS  PubMed  Google Scholar 

  31. Valle, M. et al. Cryo-EM reveals an active role for aminoacyl-tRNA in the accommodation process. EMBO J. 21, 3557–3567 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Valle, M. et al. Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy. Nat. Struct. Biol. 10, 899–906 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Vorstenbosch, E., Pape, T., Rodnina, M.V., Kraal, B. & Wintermeyer, W. The G222D mutation in elongation factor Tu inhibits the codon-induced conformational changes leading to GTPase activation on the ribosome. EMBO J. 15, 6766–6774 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yarus, M., Valle, M. & Frank, J. A twisted tRNA intermediate sets the threshold for decoding. RNA 9, 384–385 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yarus, M. & Smith, D. tRNA on the ribosome: a waggle theory. In tRNA: Structure, Biosynthesis, and Function (ed. RajBhandary, U.) 443–468 (American Society for Microbiology, Washington, DC, 1995).

    Chapter  Google Scholar 

  36. Rodnina, M.V., Fricke, R. & Wintermeyer, W. Transient conformational states of aminoacyl-tRNA during ribosome binding catalyzed by elongation factor Tu. Biochemistry 33, 12267–12275 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Piepenburg, O. et al. Intact aminoacyl-tRNA is required to trigger GTP hydrolysis by elongation factor Tu on the ribosome. Biochemistry 39, 1734–1738 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Vogeley, L., Palm, G.J., Mesters, J.R. & Hilgenfeld, R. Conformational change of elongation factor Tu (EF-Tu) induced by antibiotic binding. Crystal structure of the complex between EF-Tu–GDP and aurodox. J. Biol. Chem. 276, 17149–17155 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Mohr, D., Wintermeyer, W. & Rodnina, M.V. GTPase activation of elongation factors Tu and G on the ribosome. Biochemistry 41, 12520–12528 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Vetter, I.R. & Wittinghofer, A. The guanine nucleotide-binding switch in three dimensions. Science 294, 1299–1304 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Gromadski, K.B., Wieden, H.J. & Rodnina, M.V. Kinetic mechanism of elongation factor Ts-catalyzed nucleotide exchange in elongation factor Tu. Biochemistry 41, 162–169 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Calogero, R.A., Pon, C.L., Canonaco, M.A. & Gualerzi, C.O. Selection of the mRNA translation initiation region by Escherichia coli ribosomes. Proc. Natl. Acad. Sci. USA 85, 6427–6431 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rodnina, M.V. & Wintermeyer, W. GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs. Proc. Natl. Acad. Sci. USA 92, 1945–1949 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Katunin, V.I., Muth, G.W., Strobel, S.A., Wintermeyer, W. & Rodnina, M.V. Important contribution to catalysis of peptide bond formation by a single ionizing group within the ribosome. Mol. Cell 10, 339–346 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Stern, S., Moazed, D. & Noller, H.F. Structural analysis of RNA using chemical and enzymatic probing monitored by primer extension. Methods Enzymol. 164, 481–489 (1988).

    Article  CAS  PubMed  Google Scholar 

  46. Moazed, D. & Noller, H.F. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 327, 389–394 (1987).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank W. Wintermeyer for critical reading and discussions and V. Ramakrishnan for valuable comments on the manuscript. We thank A. Kubarenko for doing the footprinting experiment, V. Katunin and Y. Semenkov for tRNA preparations, U. Kothe for donating EF-Tu H84A, P. Striebeck, A. Böhm, C. Schillings and S. Möbitz for expert technical assistance. The work was supported by the Deutsche Forschungsgemeinschaft, the Alfried Krupp von Bohlen und Halbach-Stiftung and the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina V Rodnina.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gromadski, K., Rodnina, M. Streptomycin interferes with conformational coupling between codon recognition and GTPase activation on the ribosome. Nat Struct Mol Biol 11, 316–322 (2004). https://doi.org/10.1038/nsmb742

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb742

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing