Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamics of the context-specific translation arrest by chloramphenicol and linezolid

Abstract

Chloramphenicol (CHL) and linezolid (LZD) are antibiotics that inhibit translation. Both were thought to block peptide-bond formation between all combinations of amino acids. Yet recently, a strong nascent peptide context-dependency of CHL- and LZD-induced translation arrest was discovered. Here we probed the mechanism of action of CHL and LZD by using single-molecule Förster resonance energy transfer spectroscopy to monitor translation arrest induced by antibiotics. The presence of CHL or LZD does not substantially alter dynamics of protein synthesis until the arrest-motif of the nascent peptide is generated. Inhibition of peptide-bond formation compels the fully accommodated A-site transfer RNA to undergo repeated rounds of dissociation and nonproductive rebinding. The glycyl amino-acid moiety on the A-site Gly-tRNA manages to overcome the arrest by CHL. Our results illuminate the mechanism of CHL and LZD action through their interactions with the ribosome, the nascent peptide and the incoming amino acid, perturbing elongation dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Context-specific inhibition of translation by CHL and LZD.
Fig. 2: Monitoring the drug-induced translation arrest using smFRET-based assay.
Fig. 3: Monitoring accommodation of A-site tRNA during CHL-induced translational arrest.
Fig. 4: Measuring FRET efficiency for the intermediate FRET state during CHL-induced translational arrest.
Fig. 5: The glycyl residue of the A-site tRNA rescues CHL-arrested ribosomes.
Fig. 6: Modeling of relative placement of antibiotics and tRNA substrates in the PTC active site.

Similar content being viewed by others

Data availability

All experimental data are available upon reasonable request.

Code availability

All MATLAB scripts used in this study are available upon request.

References

  1. Rodnina, M. V. & Wintermeyer, W. Peptide bond formation on the ribosome: structure and mechanism. Curr. Opin. Struct. Biol. 13, 334–340 (2003).

    CAS  PubMed  Google Scholar 

  2. Frank, J. & Agrawal, R. K. A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 406, 318–322 (2000).

    CAS  PubMed  Google Scholar 

  3. Valle, M. et al. Locking and unlocking of ribosomal motions. Cell 114, 123–134 (2003).

    CAS  PubMed  Google Scholar 

  4. Agirrezabala, X. et al. Visualization of the hybrid state of tRNA binding promoted by spontaneous ratcheting of the ribosome. Mol. Cell 32, 190–197 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Dunkle, J. A. et al. Structures of the bacterial ribosome in classical and hybrid states of tRNA binding. Science 332, 981–984 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ermolenko, D. N. et al. Observation of intersubunit movement of the ribosome in solution using FRET. J. Mol. Biol. 370, 530–540 (2007).

    CAS  PubMed  Google Scholar 

  7. Moazed, D. & Noller, H. F. Intermediate states in the movement of transfer RNA in the ribosome. Nature 342, 142–148 (1989).

    CAS  PubMed  Google Scholar 

  8. Munro, J. B., Altman, R. B., O’Connor, N. & Blanchard, S. C. Identification of two distinct hybrid state intermediates on the ribosome. Mol. Cell 25, 505–517 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bock, L. V. et al. Energy barriers and driving forces in tRNA translocation through the ribosome. Nat. Struct. Mol. Biol. 20, 1390–1396 (2013).

    CAS  PubMed  Google Scholar 

  10. Jamiolkowski, R. M., Chen, C., Cooperman, B. S. & Goldman, Y. E. tRNA fluctuations observed on stalled ribosomes are suppressed during ongoing protein synthesis. Biophys. J. 113, 2326–2335 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Voorhees, R. M. & Ramakrishnan, V. Structural basis of the translational elongation cycle. Annu. Rev. Biochem. 82, 203–236 (2013).

    CAS  PubMed  Google Scholar 

  12. Polacek, N. & Mankin, A. S. The ribosomal peptidyl transferase center: structure, function, evolution, inhibition. Crit. Rev. Biochem. Mol. Biol. 40, 285–311 (2005).

    CAS  PubMed  Google Scholar 

  13. Wilson, D. N. The A-Z of bacterial translation inhibitors. Crit. Rev. Biochem. Mol. Biol. 44, 393–433 (2009).

    CAS  PubMed  Google Scholar 

  14. Lin, J., Zhou, D., Steitz, T. A., Polikanov, Y. S. & Gagnon, M. G. Ribosome-targeting antibiotics: modes of action, mechanisms of resistance, and implications for drug design. Annu. Rev. Biochem. 87, 451–478 (2018).

    CAS  PubMed  Google Scholar 

  15. Arenz, S. & Wilson, D. N. Bacterial protein synthesis as a target for antibiotic inhibition. Cold Spring Harb. Perspect. Med. 6, a025361 (2016).

    PubMed  PubMed Central  Google Scholar 

  16. Ehrlich, J., Gottlieb, D., Burkholder, P. R., Andierson, L. E. & Pridham, T. G. Streptomyces venezuelae, n. sp., the source of chloromycetin. J. Bacteriol. 56, 467–477 (1948).

    PubMed  PubMed Central  Google Scholar 

  17. Brickner, S. J., Barbachyn, M. R., Hutchinson, D. K. & Manninen, P. R. Linezolid (ZYVOX), the first member of a completely new class of antibacterial agents for treatment of serious Gram-positive infections. J. Med. Chem. 51, 1981–1990 (2008).

    CAS  PubMed  Google Scholar 

  18. Schlunzen, F. et al. Structural basis for the interaction of antibiotics with the peptidyl transferase center in eubacteria. Nature 413, 814–821 (2001).

    CAS  PubMed  Google Scholar 

  19. Leach, K. L. et al. The site of action of oxazolidinone antibiotics in living bacteria and in human mitochondria. Mol. Cell 26, 393–402 (2007).

    CAS  PubMed  Google Scholar 

  20. Wilson, D. N. et al. The oxazolidinone antibiotics perturb the ribosomal peptidyl-transferase center and effect tRNA positioning. Proc. Natl Acad. Sci. USA 105, 13339–13344 (2008).

    CAS  PubMed  Google Scholar 

  21. Bulkley, D., Innis, C. A., Blaha, G. & Steitz, T. A. Revisiting the structures of several antibiotics bound to the bacterial ribosome. Proc. Natl Acad. Sci. USA 107, 17158–17163 (2010).

    CAS  PubMed  Google Scholar 

  22. Pestka, S. in Antibitoics III: Mechanism of Action of Antimicrobial and Antitumor Agents (eds Corcoran, J. W. & Hahn, F. E.) 370–395 (Springer-Verlag, 1975).

  23. Marks, J. et al. Context-specific inhibition of translation by ribosomal antibiotics targeting the peptidyl transferase center. Proc. Natl Acad. Sci. USA 113, 12150–12155 (2016).

    CAS  PubMed  Google Scholar 

  24. Polikanov, Y. S. et al. Distinct tRNA accommodation intermediates observed on the ribosome with the antibiotics hygromycin A and A201A. Mol. Cell 58, 832–844 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Orelle, C. et al. Tools for characterizing bacterial protein synthesis inhibitors. Antimicrob. Agents Chemother. 57, 5994–6004 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Aitken, C. E. & Puglisi, J. D. Following the intersubunit conformation of the ribosome during translation in real time. Nat. Struct. Mol. Biol. 17, 793–800 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Dorywalska, M. et al. Site-specific labeling of the ribosome for single-molecule spectroscopy. Nucleic Acids Res. 33, 182–189 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Uemura, S. et al. Real-time tRNA transit on single translating ribosomes at codon resolution. Nature 464, 1012–1017 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen, J., Tsai, A., Petrov, A. & Puglisi, J. D. Nonfluorescent quenchers to correlate single-molecule conformational and compositional dynamics. J. Am. Chem. Soc. 134, 5734–5737 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Choi, J. & Puglisi, J. D. Three tRNAs on the ribosome slow translation elongation. Proc. Natl Acad. Sci. USA 114, 13691–13696 (2017).

    CAS  PubMed  Google Scholar 

  31. Blanchard, S. C., R. L., Kim, H. D., Chu, S. & Puglisi, J. D. tRNA selection and kinetic proofreading in translation. Nat. Struct. Mol. Biol. 11, 1008–1014 (2004).

  32. Choi, J. et al. N6-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics. Nat. Struct. Mol. Biol. 23, 110–115 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Choi, J. et al. 2′-O-methylation in mRNA disrupts tRNA decoding during translation elongation. Nat. Struct. Mol. Biol. 25, 208–216 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen, J. et al. High-throughput platform for real-time monitoring of biological processes by multicolor single-molecule fluorescence. Proc. Natl Acad. Sci. USA 111, 664–669 (2014).

    CAS  PubMed  Google Scholar 

  35. Wasserman, M. R., Alejo, J. L., Altman, R. B. & Blanchard, S. C. Multiperspective smFRET reveals rate-determining late intermediates of ribosomal translocation. Nat. Struct. Mol. Biol. 23, 333–341 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Loveland, A. B., Demo, G., Grigorieff, N. & Korostelev, A. A. Ensemble cryo-EM elucidates the mechanism of translation fidelity. Nature 546, 113–117 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Alejo, J. L. & Blanchard, S. C. Miscoding-induced stalling of substrate translocation on the bacterial ribosome. Proc. Natl Acad. Sci. USA. 114, E8603–E8610 (2017).

    CAS  PubMed  Google Scholar 

  38. Marshall, R. A., Aitken, C. E. & Puglisi, J. D. GTP hydrolysis by IF2 guides progression of the ribosome into elongation. Mol. Cell 35, 37–47 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Fislage, M. et al. Cryo-EM shows stages of initial codon selection on the ribosome by aa-tRNA in ternary complex with GTP and the GTPase-deficient EF-TuH84A. Nucleic Acids Res. 46, 5861–5874 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Brilot, A. F., Korostelev, A. A., Ermolenko, D. N. & Grigorieff, N. Structure of the ribosome with elongation factor G trapped in the pretranslocation state. Proc. Natl Acad. Sci. USA 110, 20994–20999 (2013).

    CAS  PubMed  Google Scholar 

  41. Murakami, H., Ohta, A., Ashigai, H. & Suga, H. A highly flexible tRNA acylation method for non-natural polypeptide synthesis. Nat. Methods 3, 357–359 (2006).

    CAS  PubMed  Google Scholar 

  42. Goto, Y. & Suga, H. Translation initiation with initiator tRNA charged with exotic peptides. J. Am. Chem. Soc. 131, 5040–5041 (2009).

    CAS  PubMed  Google Scholar 

  43. Dunkle, J. A., Xiong, L., Mankin, A. S. & Cate, J. H. D. Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action. Proc. Natl Acad. Sci. USA 107, 17152–17157 (2010).

    CAS  PubMed  Google Scholar 

  44. Ippolito, J. A. et al. Crystal structure of the oxazolidinone antibiotic linezolid bound to the 50S ribosomal subunit. J. Med. Chem. 51, 3353–3356 (2008).

    CAS  PubMed  Google Scholar 

  45. Polikanov, Y. S., Steitz, T. A. & Innis, C. A. A proton wire to couple aminoacyl-tRNA accommodation and peptide-bond formation on the ribosome. Nat. Struct. Mol. Biol. 21, 787–793 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Huter, P. et al. Structural basis for polyproline-mediated ribosome stalling and rescue by the translation elongation factor EF-P. Mol. Cell 68, 515–527.e6 (2017).

    CAS  PubMed  Google Scholar 

  47. Thompson, J., O’Connor, M., Mills, J. A. & Dahlberg, A. E. The protein synthesis inhibitors, oxazolidinones and chloramphenicol, cause extensive translational inaccuracy in vivo. J. Mol. Biol. 322, 273–279 (2002).

    CAS  PubMed  Google Scholar 

  48. Vazquez-Laslop, N., Thum, C. & Mankin, A. S. Molecular mechanism of drug-dependent ribosome stalling. Mol. Cell 30, 190–202 (2008).

    CAS  PubMed  Google Scholar 

  49. Orelle, C. et al. Identifying the targets of aminoacyl-tRNA synthetase inhibitors by primer extension inhibition. Nucleic Acids Res. 41, e144 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, J., Kwiatkowski, M. & Forster, A. C. Kinetics of ribosome-catalyzed polymerization using artificial aminoacyl-tRNA substrates clarifies inefficiencies and improvements. ACS Chem. Biol. 10, 2187–2192 (2015).

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health (grant nos. GM51266 to J.D.P. and R01 AI125518 to A.S.M. and N. V.-L.); by a Stanford Bio-X fellowship to J.C.; by the Knut and Alice Wallenberg Foundation postdoctoral scholarships to J.Z. and to J.W. (no. 2015.0406). We are grateful to H. Suga for providing the substrate for the flexizyme reaction and C. Innis for the advice and training in using the flexizyme-based procedures. We thank members of the Puglisi laboratory and the Mankin/Vázquez-Laslop laboratory for discussion and input.

Author information

Authors and Affiliations

Authors

Contributions

J.C., J.M., N.V.-L., A.S.M. and J.D.P. conceived the project and designed the single-molecule experiments. J.M. performed the toeprinting assay. J.C. prepared the reagent, and performed the single-molecule experiment and data analysis with the help of J.M. and J.W. J.Z. and D.-H.C. provided supporting data. J.C., J.M., J.Z., N.V.-L., A.S.M. and J.D.P. wrote the manuscript with the input of others.

Corresponding authors

Correspondence to Nora Vázquez-Laslop, Alexander S. Mankin or Joseph D. Puglisi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Figs. and Tables

Supplementary Figs. 1–4.

Reporting Summary

Source Data for Main Figures

Source Data for Main Figures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J., Marks, J., Zhang, J. et al. Dynamics of the context-specific translation arrest by chloramphenicol and linezolid. Nat Chem Biol 16, 310–317 (2020). https://doi.org/10.1038/s41589-019-0423-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0423-2

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology