Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The J domain–related cochaperone Tim16 is a constituent of the mitochondrial TIM23 preprotein translocase

Abstract

Mitochondria import the vast majority of their proteins from the cytosol. The mitochondrial import motor of the TIM23 translocase drives the translocation of precursor proteins across the outer and inner membrane in an ATP-dependent reaction. Tim44 at the inner face of the translocation pore recruits the chaperone mtHsp70, which binds the incoming precursor protein. This reaction is assisted by the cochaperones Tim14 and Mge1. We have identified a novel essential cochaperone, Tim16. It is related to J-domain proteins and forms a stable subcomplex with the J protein Tim14. Depletion of Tim16 has a marked effect on protein import into the mitochondrial matrix, impairs the interaction of Tim14 with the TIM23 complex and leads to severe structural changes of the import motor. In conclusion, Tim16 is a constituent of the TIM23 preprotein translocase, where it exerts crucial functions in the import motor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The J-related protein Tim16 is present in a complex with Tim14.
Figure 2: Subcellular and submitochondrial localization of Tim16.
Figure 3: Import of preproteins by the TIM23 complex is affected in mitochondria depleted of Tim16.
Figure 4: Tim16 is a component of the TIM23 complex.
Figure 5: Tim16 is in close proximity to a translocating polypeptide chain.
Figure 6: Tim16 is part of the import motor.

Similar content being viewed by others

References

  1. Koehler, C.M. Protein translocation pathways of the mitochondrion. FEBS Lett. 476, 27–31 (2000).

    Article  CAS  Google Scholar 

  2. Bauer, M.F., Hofmann, S., Neupert, W. & Brunner, M. Protein translocation into mitochondria: the role of TIM complexes. Trends Cell Biol. 10, 25–31 (2000).

    Article  CAS  Google Scholar 

  3. Jensen, R. & Dunn, C. Protein import into and across the mitochondrial inner membrane: role of the TIM23 and TIM22 translocons. Biochim. Biophys. Acta 1592, 25–34 (2002).

    Article  CAS  Google Scholar 

  4. Endo, T., Yamamoto, H. & Esaki, M. Functional cooperation and separation of translocators in protein import into mitochondria, the double-membrane bounded organelles. J. Cell Sci. 116, 3259–3267 (2003).

    Article  CAS  Google Scholar 

  5. Rehling, P., Pfanner, N. & Meisinger, C. Insertion of hydrophobic membrane proteins into the inner mitochondrial membrane—a guided tour. J. Mol. Biol. 326, 639–657 (2003).

    Article  CAS  Google Scholar 

  6. Bauer, M.F., Sirrenberg, C., Neupert, W. & Brunner, M. Role of Tim23 as voltage sensor and presequence receptor in protein import into mitochondria. Cell 87, 33–41 (1996).

    Article  CAS  Google Scholar 

  7. Dekker, P.J. et al. The Tim core complex defines the number of mitochondrial translocation contact sites and can hold arrested preproteins in the absence of matrix Hsp70-Tim44. EMBO J. 16, 5408–5419 (1997).

    Article  CAS  Google Scholar 

  8. Milisav, I., Moro, F., Neupert, W. & Brunner, M. Modular structure of the TIM23 preprotein translocase of mitochondria. J. Biol. Chem. 276, 25856–25861 (2001).

    Article  CAS  Google Scholar 

  9. Truscott, K.N. et al. A presequence- and voltage-sensitive channel of the mitochondrial preprotein translocase formed by Tim23. Nat. Struct. Biol. 8, 1074–1082 (2001).

    Article  CAS  Google Scholar 

  10. Yamamoto, H. et al. Tim50 is a subunit of the TIM23 complex that links protein translocation across the outer and inner mitochondrial membranes. Cell 111, 519–528 (2002).

    Article  CAS  Google Scholar 

  11. Geissler, A. et al. The mitochondrial presequence translocase: an essential role of Tim50 in directing preproteins to the import channel. Cell 111, 507–518 (2002).

    Article  CAS  Google Scholar 

  12. Mokranjac, D. et al. Tim50, a novel component of the TIM23 preprotein translocase of mitochondria. EMBO J. 22, 816–825 (2003).

    Article  CAS  Google Scholar 

  13. Matouschek, A., Pfanner, N. & Voos, W. Protein unfolding by mitochondria. The Hsp70 import motor. EMBO Rep. 1, 404–410 (2000).

    Article  CAS  Google Scholar 

  14. Neupert, W. & Brunner, M. The protein import motor of mitochondria. Nat. Rev. Mol. Cell Biol. 3, 555–565 (2002).

    Article  CAS  Google Scholar 

  15. Mokranjac, D., Sichting, M., Neupert, W. & Hell, K. Tim14, a novel key component of the import motor of the TIM23 protein translocase of mitochondria. EMBO J. 22, 4945–4956 (2003).

    Article  CAS  Google Scholar 

  16. D'Silva, P.D., Schilke, B., Walter, W., Andrew, A. & Craig, E.A. J protein cochaperone of the mitochondrial inner membrane required for protein import into the mitochondrial matrix. Proc. Natl. Acad. Sci. USA 100, 13839–13844 (2003).

    Article  CAS  Google Scholar 

  17. Truscott, K.N. et al. A J-protein is an essential subunit of the presequence translocase-associated protein import motor of mitochondria. J. Cell Biol. 163, 707–713 (2003).

    Article  CAS  Google Scholar 

  18. Pfanner, N. & Geissler, A. Versatility of the mitochondrial protein import machinery. Nat. Rev. Mol. Cell. Biol. 2, 339–349 (2001).

    Article  CAS  Google Scholar 

  19. Schneider, H.C. et al. Mitochondrial Hsp70/MIM44 complex facilitates protein import. Nature 371, 768–774 (1994).

    Article  CAS  Google Scholar 

  20. Liu, Q., D'Silva, P., Walter, W., Marszalek, J. & Craig, E.A. Regulated cycling of mitochondrial Hsp70 at the protein import channel. Science 300, 139–141 (2003).

    Article  CAS  Google Scholar 

  21. Bukau, B. & Horwich, A.L. The Hsp70 and Hsp60 chaperone machines. Cell 92, 351–366 (1998).

    Article  CAS  Google Scholar 

  22. Hartl, F.U. & Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858 (2002).

    Article  CAS  Google Scholar 

  23. Matlack, K.E., Misselwitz, B., Plath, K. & Rapoport, T.A. BiP acts as a molecular ratchet during posttranslational transport of prepro-α factor across the ER membrane. Cell 97, 553–564 (1999).

    Article  CAS  Google Scholar 

  24. Jackson-Constan, D., Akita, M. & Keegstra, K. Molecular chaperones involved in chloroplast protein import. Biochim. Biophys. Acta 1541, 102–113 (2001).

    Article  CAS  Google Scholar 

  25. Glick, B.S. Can Hsp70 proteins act as force-generating motors? Cell 80, 11–14 (1995).

    Article  CAS  Google Scholar 

  26. Okamoto, K. et al. The protein import motor of mitochondria: a targeted molecular ratchet driving unfolding and translocation. EMBO J. 21, 3659–3671 (2002).

    Article  CAS  Google Scholar 

  27. Blom, J., Dekker, P. & Meijer, M. Functional and physical interactions of components of the yeast mitochondrial inner-membrane import machinery (MIM). Eur. J. Biochem. 232, 309–314 (1995).

    Article  CAS  Google Scholar 

  28. Kelley, W.L. The J-domain family and the recruitment of chaperone power. Trends Biochem. Sci. 23, 222–227 (1998).

    Article  CAS  Google Scholar 

  29. Rost, B. PHD: predicting one-dimensional protein structure by profile-based neural networks. Methods Enzymol. 266, 525–539 (1996).

    Article  CAS  Google Scholar 

  30. Szyperski, T., Pellecchia, M., Wall, D., Georgopoulos, C. & Wuthrich, K. NMR structure determination of the Escherichia coli DnaJ molecular chaperone: secondary structure and backbone fold of the N-terminal region (residues 2–108) containing the highly conserved J domain. Proc. Natl. Acad. Sci. USA 91, 11343–11347 (1994).

    Article  CAS  Google Scholar 

  31. Greene, M.K., Maskos, K. & Landry, S.J. Role of the J-domain in the cooperation of Hsp40 with Hsp70. Proc. Natl. Acad. Sci. USA 95, 6108–6113 (1998).

    Article  CAS  Google Scholar 

  32. Wall, D., Zylicz, M. & Georgopoulos, C. The NH2-terminal 108 amino acids of the Escherichia coli DnaJ protein stimulate the ATPase activity of DnaK and are sufficient for lambda replication. J. Biol. Chem. 269, 5446–5451 (1994).

    CAS  PubMed  Google Scholar 

  33. Mayer, M.P., Laufen, T., Paal, K., McCarty, J.S. & Bukau, B. Investigation of the interaction between DnaK and DnaJ by surface plasmon resonance spectroscopy. J. Mol. Biol. 289, 1131–1144 (1999).

    Article  CAS  Google Scholar 

  34. Becker, S., Gehrsitz, A., Bork, P., Buchner, S. & Buchner, E. The black-pearl gene of Drosophila defines a novel conserved protein family and is required for larval growth and survival. Gene 262, 15–22 (2001).

    Article  CAS  Google Scholar 

  35. Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 30, 276–280 (2002).

    Article  CAS  Google Scholar 

  36. Winzeler, E.A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

    Article  CAS  Google Scholar 

  37. Gartner, F. et al. Mitochondrial import of subunit Va of cytochrome c oxidase characterized with yeast mutants. J. Biol. Chem. 270, 3788–3795 (1995).

    Article  CAS  Google Scholar 

  38. Kang, P.J. et al. Requirement for hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins. Nature 348, 137–143 (1990).

    Article  CAS  Google Scholar 

  39. Moro, F., Sirrenberg, C., Schneider, H.C., Neupert, W. & Brunner, M. The TIM17.23 preprotein translocase of mitochondria: composition and function in protein transport into the matrix. EMBO J. 18, 3667–3675 (1999).

    Article  CAS  Google Scholar 

  40. Berthold, J. et al. The MIM complex mediates preprotein translocation across the mitochondrial inner membrane and couples it to the mt-Hsp70/ATP driving system. Cell 81, 1085–1093 (1995).

    Article  CAS  Google Scholar 

  41. Rassow, J. et al. Mitochondrial protein import: biochemical and genetic evidence for interaction of matrix hsp70 and the inner membrane protein MIM44. J. Cell Biol. 127, 1547–1556 (1994).

    Article  CAS  Google Scholar 

  42. Pfanner, N. et al. Uniform nomenclature for the protein transport machinery of the mitochondrial membranes. Trends Biochem. Sci. 21, 51–52 (1996).

    Article  CAS  Google Scholar 

  43. Kronidou, N.G. et al. Dynamic interaction between Isp45 and mitochondrial hsp70 in the protein import system of the yeast mitochondrial inner membrane. Proc. Natl. Acad. Sci. USA 91, 12818–12822 (1994).

    Article  CAS  Google Scholar 

  44. Frazier, A. et al. Pam16 has an essential role in the mitochondrial protein import motor. Nat. Struct. Mol. Biol. 11, 226–233 (2004).

    Article  CAS  Google Scholar 

  45. Rowley, N. et al. Mdj1p, a novel chaperone of the DnaJ family, is involved in mitochondrial biogenesis and protein folding. Cell 77, 249–259 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to U. Gärtner, H. Germeroth and M. Malesic for excellent technical assistance, to T. Schwickert for help in some experiments, to A. Azem for providing the yeast strain expressing mtHsp70-His and to C. Bornhövd and S. Meier for providing subcellular yeast fractions and the CoxVa constructs. We thank A. Reichert for critically reading the manuscript. This work was supported by grants from the Deutsche Forschungsgemeinschaft (SFB 594 (B3, B4)), the Bundesministerium für Bildung und Forschung (MITOP) and the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Hell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozany, C., Mokranjac, D., Sichting, M. et al. The J domain–related cochaperone Tim16 is a constituent of the mitochondrial TIM23 preprotein translocase. Nat Struct Mol Biol 11, 234–241 (2004). https://doi.org/10.1038/nsmb734

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb734

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing