Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The poly(A)-dependent transcriptional pause is mediated by CPSF acting on the body of the polymerase

Abstract

Eukaryotic poly(A) signals direct mRNA 3′-end processing and also pausing and termination of transcription. We show that pausing and termination require the processing factor CPSF, which binds the AAUAAA hexamer of the mammalian poly(A) signal. Pausing does not require the RNA polymerase II C-terminal domain (CTD) or the cleavage stimulation factor, CstF, that binds the CTD. Pull-down experiments show that CPSF binds, principally through its 30-kDa subunit, to the body of the polymerase. CPSF can also bind CstF, but this seems to be mutually exclusive with polymerase binding. We suggest that CPSF, while binding the body of the polymerase, scans for hexamers in the extruding RNA. Any encounter with a hexamer triggers pausing. If the hexamer is part of a functional poly(A) signal, CstF is recruited and binds CPSF, causing it to release the polymerase body and move (with CstF) to the CTD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The core of the mammalian cleavage and polyadenylation apparatus11.
Figure 2: NS1A expression blocks poly(A)-dependent termination.
Figure 3: NS1A expression blocks poly(A)-dependent pausing.
Figure 4: CPSF interacts with the body of the polymerase.
Figure 5: Selective pull-down of CPSF–polymerase complex excludes CstF.
Figure 6: The dynamic role of CPSF in transcription and processing.

Similar content being viewed by others

References

  1. Gavin, A.C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Calvo, O. & Manley, J.L. Strange bedfellows: polyadenylation factors at the promoter. Genes Dev. 17, 1321–1327 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Proudfoot, N. New perspectives on connecting messenger RNA 3′ end formation to transcription. Curr. Opin. Cell Biol. 16, 272–278 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Rosonina, E., Kaneko, S. & Manley, J.L. Terminating the transcript: breaking up is hard to do. Genes Dev. 20, 1050–1056 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Ansari, A. & Hampsey, M. A role for the CPF 3′-end processing machinery in RNAP II-dependent gene looping. Genes Dev. 19, 2969–2978 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hammell, C.M. et al. Coupling of termination, 3′ processing, and mRNA export. Mol. Cell. Biol. 22, 6441–6457 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Proudfoot, N.J., Furger, A. & Dye, M.J. Integrating mRNA processing with transcription. Cell 108, 501–512 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. O'Sullivan, J.M. et al. Gene loops juxtapose promoters and terminators in yeast. Nat. Genet. 36, 1014–1018 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Dantonel, J.C., Murthy, K.G., Manley, J.L. & Tora, L. Transcription factor TFIID recruits factor CPSF for formation of 3′ end of mRNA. Nature 389, 399–402 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Flaherty, S.M., Fortes, P., Izaurralde, E., Mattaj, I.W. & Gilmartin, G.M. Participation of the nuclear cap binding complex in pre-mRNA 3′ processing. Proc. Natl. Acad. Sci. USA 94, 11893–11898 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhao, J., Hyman, L. & Moore, C. Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol. Mol. Biol. Rev. 63, 405–445 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Murthy, K.G. & Manley, J.L. The 160-kD subunit of human cleavage-polyadenylation specificity factor coordinates pre-mRNA 3′-end formation. Genes Dev. 9, 2672–2683 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Takagaki, Y. & Manley, J.L. Complex protein interactions within the human polyadenylation machinery identify a novel component. Mol. Cell. Biol. 20, 1515–1525 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gilmartin, G.M. & Nevins, J.R. An ordered pathway of assembly of components required for polyadenylation site recognition and processing. Genes Dev. 3, 2180–2190 (1989).

    Article  CAS  PubMed  Google Scholar 

  15. Bird, G., Zorio, D.A. & Bentley, D.L. RNA polymerase II carboxy-terminal domain phosphorylation is required for cotranscriptional pre-mRNA splicing and 3′-end formation. Mol. Cell. Biol. 24, 8963–8969 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ryan, K., Murthy, K.G., Kaneko, S. & Manley, J.L. Requirements of the RNA polymerase II C-terminal domain for reconstituting pre-mRNA 3′ cleavage. Mol. Cell. Biol. 22, 1684–1692 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McCracken, S. et al. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385, 357–361 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Park, N.J., Tsao, D.C. & Martinson, H.G. The two steps of poly(A)-dependent termination, pausing and release, can be uncoupled by truncation of the RNA polymerase II CTD. Mol. Cell. Biol. 24, 4092–4103 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, Z., Fu, J. & Gilmour, D.S. CTD-dependent dismantling of the RNA polymerase II elongation complex by the pre-mRNA 3′-end processing factor, Pcf11. Genes Dev. 19, 1572–1580 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fong, N. & Bentley, D.L. Capping, splicing, and 3′ processing are independently stimulated by RNA polymerase II: different functions for different segments of the CTD. Genes Dev. 15, 1783–1795 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Takagaki, Y. & Manley, J.L. RNA recognition by the human polyadenylation factor CstF. Mol. Cell. Biol. 17, 3907–3914 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chao, L.C., Jamil, A., Kim, S.J., Huang, L. & Martinson, H.G. Assembly of the cleavage and polyadenylation apparatus requires about 10 seconds in vivo and is faster for strong than for weak poly(A) sites. Mol. Cell. Biol. 19, 5588–5600 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rigo, F., Kazerouninia, A., Nag, A. & Martinson, H.G. The RNA tether from the poly(A) signal to the polymerase mediates coupling of transcription to cleavage and polyadenylation. Mol. Cell 20, 733–745 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Staley, J.P. & Guthrie, C. Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell 92, 315–326 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Tacahashi, Y., Helmling, S. & Moore, C.L. Functional dissection of the zinc finger and flanking domains of the Yth1 cleavage/polyadenylation factor. Nucleic Acids Res. 31, 1744–1752 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Orozco, I.J., Kim, S.J. & Martinson, H.G. The poly(A) signal, without the assistance of any downstream element, directs RNA polymerase II to pause in vivo and then to release stochastically from the template. J. Biol. Chem. 277, 42899–42911 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Tran, D.P., Kim, S.J., Park, N.J., Jew, T.M. & Martinson, H.G. Mechanism of poly(A) signal transduction to RNA polymerase II in vitro. Mol. Cell. Biol. 21, 7495–7508 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nag, A., Narsinh, K., Kazerouninia, A. & Martinson, H.G. The conserved AAUAAA hexamer of the poly(A) signal can act alone to trigger a stable decrease in RNA polymerase II transcription velocity. RNA 12, 1534–1544 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Connelly, S. & Manley, J.L. A functional mRNA polyadenylation signal is required for transcription termination by RNA polymerase II. Genes Dev. 2, 440–452 (1988).

    Article  CAS  PubMed  Google Scholar 

  30. Whitelaw, E. & Proudfoot, N. α-thalassaemia caused by a poly(A) site mutation reveals that transcriptional termination is linked to 3′ end processing in the human α2 globin gene. EMBO J. 5, 2915–2922 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Twu, K.Y., Noah, D.L., Rao, P., Kuo, R.L. & Krug, R.M. The CPSF30 binding site on the NS1A protein of influenza A virus is a potential antiviral target. J. Virol. 80, 3957–3965 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nemeroff, M.E., Barabino, S.M., Li, Y., Keller, W. & Krug, R.M. Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3′end formation of cellular pre-mRNAs. Mol. Cell 1, 991–1000 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Li, Y., Chen, Z.Y., Wang, W., Baker, C.C. & Krug, R.M. The 3′-end-processing factor CPSF is required for the splicing of single-intron pre-mRNAs in vivo. RNA 7, 920–931 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Noah, D.L., Twu, K.Y. & Krug, R.M. Cellular antiviral responses against influenza A virus are countered at the posttranscriptional level by the viral NS1A protein via its binding to a cellular protein required for the 3′ end processing of cellular pre-mRNAS. Virology 307, 386–395 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Morillon, A., O'Sullivan, J., Azad, A., Proudfoot, N. & Mellor, J. Regulation of elongating RNA polymerase II by forkhead transcription factors in yeast. Science 300, 492–495 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Dichtl, B. et al. Yhh1p/Cft1p directly links poly(A) site recognition and RNA polymerase II transcription termination. EMBO J. 21, 4125–4135 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rosonina, E. & Blencowe, B.J. Analysis of the requirement for RNA polymerase II CTD heptapeptide repeats in pre-mRNA splicing and 3′-end cleavage. RNA 10, 581–589 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yankulov, K. et al. MCM proteins are associated with RNA polymerase II holoenzyme. Mol. Cell. Biol. 19, 6154–6163 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gerard, M. et al. Purification and interaction properties of the human RNA polymerase B(II) general transcription factor BTF2. J. Biol. Chem. 266, 20940–20945 (1991).

    CAS  PubMed  Google Scholar 

  40. Dichtl, B. et al. A role for SSU72 in balancing RNA polymerase II transcription elongation and termination. Mol. Cell 10, 1139–1150 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Mandel, C.R. et al. Polyadenylation factor CPSF-73 is the pre-mRNA 3′-end-processing endonuclease. Nature 444, 953–956 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Qu, X. et al. The C-terminal domains of vertebrate CstF-64 and its yeast orthologue Rna15 form a new structure critical for mRNA 3′-end processing. J. Biol. Chem. 282, 2101–2115 (2006).

    Article  PubMed  Google Scholar 

  43. Zhang, Z. & Gilmour, D.S. Pcf11 is a termination factor in Drosophila that dismantles the elongation complex by bridging the CTD of RNA polymerase II to the nascent transcript. Mol. Cell 21, 65–74 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Meinhart, A. & Cramer, P. Recognition of RNA polymerase II carboxy-terminal domain by 3′-RNA-processing factors. Nature 430, 223–226 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. de Vries, H. et al. Human pre-mRNA cleavage factor II(m) contains homologs of yeast proteins and bridges two other cleavage factors. EMBO J. 19, 5895–5904 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bird, G., Fong, N., Gatlin, J.C., Farabaugh, S. & Bentley, D.L. Ribozyme cleavage reveals connections between mRNA release from the site of transcription and pre-mRNA processing. Mol. Cell 20, 747–758 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Kim, S.J. & Martinson, H.G. Poly(A)-dependent transcription termination: continued communication of the poly(A) signal with the polymerase is required long after extrusion in vivo. J. Biol. Chem. 278, 41691–41701 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Takagaki, Y., Seipelt, R.L., Peterson, M.L. & Manley, J.L. The polyadenylation factor CstF-64 regulates alternative processing of IgM heavy chain pre-mRNA during B cell differentiation. Cell 87, 941–952 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Shell, S.A., Hesse, C., Morris, S.M., Jr . & Milcarek, C. Elevated levels of the 64-kDa cleavage stimulatory factor (CstF-64) in lipopolysaccharide-stimulated macrophages influence gene expression and induce alternative poly(A) site selection. J. Biol. Chem. 280, 39950–39961 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Kim, M., Ahn, S.H., Krogan, N.J., Greenblatt, J.F. & Buratowski, S. Transitions in RNA polymerase II elongation complexes at the 3′ ends of genes. EMBO J. 23, 354–364 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Venkataraman, K., Brown, K.M. & Gilmartin, G.M. Analysis of a noncanonical poly(A) site reveals a tripartite mechanism for vertebrate poly(A) site recognition. Genes Dev. 19, 1315–1327 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tian, B., Hu, J., Zhang, H. & Lutz, C.S. A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res. 33, 201–212 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yeung, G. et al. Poly(A)-driven and poly(A)-assisted termination: two different modes of poly(A)-dependent transcription termination. Mol. Cell. Biol. 18, 276–289 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gromak, N., West, S. & Proudfoot, N.J. Pause sites promote transcriptional termination of mammalian RNA polymerase II. Mol. Cell. Biol. 26, 3986–3996 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Connelly, S. & Manley, J.L. RNA polymerase II transcription termination is mediated specifically by protein binding to a CCAAT box sequence. Mol. Cell. Biol. 9, 5254–5259 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dye, M.J. & Proudfoot, N.J. Multiple transcript cleavage precedes polymerase release in termination by RNA polymerase II. Cell 105, 669–681 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Matlin, A.J., Clark, F. & Smith, C.W. Understanding alternative splicing: towards a cellular code. Nat. Rev. Mol. Cell Biol. 6, 386–398 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Lee, K.A. & Green, M.R. Small-scale preparation of extracts from radiolabeled cells efficient in pre-mRNA splicing. Methods Enzymol. 181, 20–30 (1990).

    Article  CAS  PubMed  Google Scholar 

  59. Wallace, A.M. et al. Two distinct forms of the 64,000 Mr protein of the cleavage stimulation factor are expressed in mouse male germ cells. Proc. Natl. Acad. Sci. USA 96, 6763–6768 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dass, B., Attaya, E.N., Wallace, A.M. & MacDonald, C.C. Overexpression of the CstF-64 and CPSF-160 polyadenylation protein messenger RNAs in mouse male germ cells. Biol. Reprod. 64, 1722–1729 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Kazerouninia and F. Rigo for important discussions during the course of this work, S. Vong for comments on the manuscript, C. MacDonald (Texas Tech University) for monoclonal antibodies to CstF64 (3A7) and E1B, R. Krug (University of Texas at Austin) for NS1A expression plasmids and antibody to NS1A, D. Bentley (University of Colorado, Fitzsimons) for B-10 tagged Rpb1 and antibody to CPSF73, C. Milcarek (University of Pittsburg) for antibody to CPSF160, B. Blencowe (University of Toronto) for Flag-tagged Rpb1, and the US National Institutes of Health for grant GM50863.

Author information

Authors and Affiliations

Authors

Contributions

A.N. was responsible for all of the experimental work, except for that shown in Fig. 2a and Supplementary Fig. 1a, to which K.N. contributed. A.N. and H.G.M. designed experiments, interpreted data and prepared the manuscript.

Corresponding author

Correspondence to Harold G Martinson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Effect of NS1A expression on RNA and protein levels. (PDF 1750 kb)

Supplementary Fig. 2

NS1A prevents termination by multiple types of poly(A) signal. (PDF 802 kb)

Supplementary Fig. 3

The CPSF interaction with the polymerase body is robust. (PDF 308 kb)

Supplementary Fig. 4

CPSF30 and CPSF100 bind to the polymerase. (PDF 314 kb)

Supplementary Fig. 5

Specificity of the antibody to CPSF (N-20) used in Figures 5 and 6. (PDF 296 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nag, A., Narsinh, K. & Martinson, H. The poly(A)-dependent transcriptional pause is mediated by CPSF acting on the body of the polymerase. Nat Struct Mol Biol 14, 662–669 (2007). https://doi.org/10.1038/nsmb1253

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1253

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing