Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CDK Pho85 targets CDK inhibitor Sic1 to relieve yeast G1 checkpoint arrest after DNA damage

Abstract

In budding yeast, DNA damage in G1 activates a Rad9-dependent checkpoint that targets the cyclin-dependent kinase (CDK) Cdc28 to delay G1 exit. After a transient arrest, cells may enter S phase before completing DNA repair. We used genetic analysis to identify the stress-responsive CDK Pho85, the cyclin Pho80 and the targeted transcription factors Pho4 and Swi5 as determinants of G1 checkpoint adaptation. Consistent with opposing roles for the Cdc28 inhibitor Sic1 in blocking G1 exit and Pho85 in targeting Sic1 for proteolysis, mutation of Sic1 curtails G1 checkpoint delay, whereas Pho85 inhibition after DNA damage promotes Sic1 stability. G1 checkpoint delay in mutants lacking both Sic1 and Pho4 is independent of Pho85 activity. These data establish a G1 checkpoint adaptation pathway where Pho85 mediates Pho4 downregulation and Sic1 degradation to release Cdc28 activity and promote onset of S phase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pho85 regulation of G1 checkpoint response to ionizing radiation.
Figure 2: Pho85 mediates adaptation to DNA damage checkpoint–induced G1 arrest.
Figure 3: Deregulation of Pho80–Pho85 targets Pho4 and Swi5 contributes to the prolonged G1 arrest after DNA damage.
Figure 4: Genetic separation of G1 checkpoint delays after DNA damage and osmotic stress.
Figure 5: Sic1 and Pho4 mediate exit from DNA damage G1 arrest after Pho85 inhibition.

Similar content being viewed by others

References

  1. Bartek, J. & Lukas, J. Mammalian G1- and S-phase checkpoints in response to DNA damage. Curr. Opin. Cell Biol. 13, 738–747 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Lukas, J., Lukas, C. & Bartek, J. Mammalian cell cycle checkpoints: signalling pathways and their organization in space and time. DNA Repair (Amst.) 3, 997–1007 (2004).

    Article  CAS  Google Scholar 

  3. Royds, J.A. & Iacopetta, B. p53 and disease: when the guardian angel fails. Cell Death Differ. 13, 1017–1026 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Lowndes, N.F. & Murguia, J.R. Sensing and responding to DNA damage. Curr. Opin. Genet. Dev. 10, 17–25 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Kolodner, R.D., Putnam, C.D. & Myung, K. Maintenance of genome stability in Saccharomyces cerevisiae. Science 297, 552–557 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Rouse, J. & Jackson, S.P. Interfaces between the detection, signaling, and repair of DNA damage. Science 297, 547–551 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Melo, J. & Toczyski, D. A unified view of the DNA-damage checkpoint. Curr. Opin. Cell Biol. 14, 237–245 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Branzei, D. & Foiani, M. The DNA damage response during DNA replication. Curr. Opin. Cell Biol. 17, 568–575 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Longhese, M.P., Clerici, M. & Lucchini, G. The S-phase checkpoint and its regulation in Saccharomyces cerevisiae. Mutat. Res. 532, 41–58 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Wysocki, R. et al. Role of Dot1-dependent histone H3 methylation in G1 and S phase DNA damage checkpoint functions of Rad9. Mol. Cell. Biol. 25, 8430–8443 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sidorova, J.M. & Breeden, L.L. Rad53-dependent phosphorylation of Swi6 and down-regulation of CLN1 and CLN2 transcription occur in response to DNA damage in Saccharomyces cerevisiae. Genes Dev. 11, 3032–3045 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sidorova, J.M. & Breeden, L.L. Rad53 checkpoint kinase phosphorylation site preference identified in the Swi6 protein of Saccharomyces cerevisiae. Mol. Cell. Biol. 23, 3405–3416 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Barberis, M. et al. The yeast cyclin-dependent kinase inhibitor Sic1 and mammalian p27Kip1 are functional homologues with a structurally conserved inhibitory domain. Biochem. J. 387, 639–647 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Harper, J.W. A phosphorylation-driven ubiquitination switch for cell-cycle control. Trends Cell Biol. 12, 104–107 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Westmoreland, T.J. et al. Cell cycle progression in G1 and S phases is CCR4 dependent following ionizing radiation or replication stress in Saccharomyces cerevisiae. Eukaryot. Cell 3, 430–446 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Carroll, A.S. & O'Shea, E.K. Pho85 and signaling environmental conditions. Trends Biochem. Sci. 27, 87–93 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Moffat, J., Huang, D. & Andrews, B. Functions of Pho85 cyclin-dependent kinases in budding yeast. Prog. Cell Cycle Res. 4, 97–106 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Toh-e, A. & Nishizawa, M. Structure and function of cyclin-dependent Pho85 kinase of Saccharomyces cerevisiae. J. Gen. Appl. Microbiol. 47, 107–117 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Knapp, D., Bhoite, L., Stillman, D.J. & Nasmyth, K. The transcription factor Swi5 regulates expression of the cyclin kinase inhibitor p40SIC1. Mol. Cell. Biol. 16, 5701–5707 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nishizawa, M., Kawasumi, M., Fujino, M. & Toh-e, A. Phosphorylation of sic1, a cyclin-dependent kinase (Cdk) inhibitor, by Cdk including Pho85 kinase is required for its prompt degradation. Mol. Biol. Cell 9, 2393–2405 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Carroll, A.S., Bishop, A.C., DeRisi, J.L., Shokat, K.M. & O'Shea, E.K. Chemical inhibition of the Pho85 cyclin-dependent kinase reveals a role in the environmental stress response. Proc. Natl. Acad. Sci. USA 98, 12578–12583 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fitz Gerald, J.N., Benjamin, J.M. & Kron, S.J. Robust G1 checkpoint arrest in budding yeast: dependence on DNA damage signaling and repair. J. Cell Sci. 115, 1749–1757 (2002).

    Google Scholar 

  23. Bishop, A.C. et al. A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407, 395–401 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Flattery-O'Brien, J.A. & Dawes, I.W. Hydrogen peroxide causes RAD9-dependent cell cycle arrest in G2 in Saccharomyces cerevisiae whereas menadione causes G1 arrest independent of RAD9 function. J. Biol. Chem. 273, 8564–8571 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Pellicioli, A. & Foiani, M. Signal transduction: how rad53 kinase is activated. Curr. Biol. 15, R769–R771 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Lewis, L.K. & Resnick, M.A. Tying up loose ends: nonhomologous end-joining in Saccharomyces cerevisiae. Mutat. Res. 451, 71–89 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Javaheri, A. et al. Yeast G1 DNA damage checkpoint regulation by H2A phosphorylation is independent of chromatin remodeling. Proc. Natl. Acad. Sci. USA (in the press).

  28. Beranek, D.T. Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents. Mutat. Res. 231, 11–30 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Lundin, C. et al. Methyl methanesulfonate (MMS) produces heat-labile DNA damage but no detectable in vivo DNA double-strand breaks. Nucleic Acids Res. 33, 3799–3811 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Choy, J.S. & Kron, S.J. NuA4 subunit Yng2 function in intra-S-phase DNA damage response. Mol. Cell. Biol. 22, 8215–8225 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lewis, L.K., Kirchner, J.M. & Resnick, M.A. Requirement for end-joining and checkpoint functions, but not RAD52-mediated recombination, after EcoRI endonuclease cleavage of Saccharomyces cerevisiae DNA. Mol. Cell. Biol. 18, 1891–1902 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lewis, L.K., Westmoreland, J.W. & Resnick, M.A. Repair of endonuclease-induced double-strand breaks in Saccharomyces cerevisiae: essential role for genes associated with nonhomologous end-joining. Genetics 152, 1513–1529 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Measday, V., McBride, H., Moffat, J., Stillman, D. & Andrews, B. Interactions between Pho85 cyclin-dependent kinase complexes and the Swi5 transcription factor in budding yeast. Mol. Microbiol. 35, 825–834 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Huang, D., Moffat, J. & Andrews, B. Dissection of a complex phenotype by functional genomics reveals roles for the yeast cyclin-dependent protein kinase Pho85 in stress adaptation and cell integrity. Mol. Cell. Biol. 22, 5076–5088 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Winkler, A. et al. Heat stress activates the yeast high-osmolarity glycerol mitogen-activated protein kinase pathway, and protein tyrosine phosphatases are essential under heat stress. Eukaryot. Cell 1, 163–173 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rep, M. et al. The Saccharomyces cerevisiae Sko1p transcription factor mediates HOG pathway-dependent osmotic regulation of a set of genes encoding enzymes implicated in protection from oxidative damage. Mol. Microbiol. 40, 1067–1083 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Bilsland, E., Molin, C., Swaminathan, S., Ramne, A. & Sunnerhagen, P. Rck1 and Rck2 MAPKAP kinases and the HOG pathway are required for oxidative stress resistance. Mol. Microbiol. 53, 1743–1756 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Lawrence, C.L., Botting, C.H., Antrobus, R. & Coote, P.J. Evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast: regulating adaptation to citric acid stress. Mol. Cell. Biol. 24, 3307–3323 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Panadero, J., Pallotti, C., Rodriguez-Vargas, S., Randez-Gil, F. & Prieto, J.A. A downshift in temperature activates the high osmolarity glycerol (HOG) pathway, which determines freeze tolerance in Saccharomyces cerevisiae. J. Biol. Chem. 281, 4638–4645 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Escote, X., Zapater, M., Clotet, J. & Posas, F. Hog1 mediates cell-cycle arrest in G1 phase by the dual targeting of Sic1. Nat. Cell Biol. 6, 997–1002 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Haghnazari, E. & Heyer, W.D. The Hog1 MAP kinase pathway and the Mec1 DNA damage checkpoint pathway independently control the cellular responses to hydrogen peroxide. DNA Repair (Amst.) 3, 769–776 (2004).

    Article  CAS  Google Scholar 

  42. Doolin, M.T., Johnson, A.L., Johnston, L.H. & Butler, G. Overlapping and distinct roles of the duplicated yeast transcription factors Ace2p and Swi5p. Mol. Microbiol. 40, 422–432 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Aerne, B.L., Johnson, A.L., Toyn, J.H. & Johnston, L.H. Swi5 controls a novel wave of cyclin synthesis in late mitosis. Mol. Biol. Cell 9, 945–956 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sancar, A., Lindsey-Boltz, L.A., Unsal-Kacmaz, K. & Linn, S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73, 39–85 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Li, L. & Zou, L. Sensing, signaling, and responding to DNA damage: organization of the checkpoint pathways in mammalian cells. J. Cell. Biochem. 94, 298–306 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Garber, P.M., Vidanes, G.M. & Toczyski, D.P. Damage in transition. Trends Biochem. Sci. 30, 63–66 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Nilssen, E.A. et al. Germinating fission yeast spores delay in G1 in response to UV irradiation. BMC Cell Biol. 5, 40 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cruz, J.C. & Tsai, L.H. A Jekyll and Hyde kinase: roles for Cdk5 in brain development and disease. Curr. Opin. Neurobiol. 14, 390–394 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, J., Krishnamurthy, P.K. & Johnson, G.V. Cdk5 phosphorylates p53 and regulates its activity. J. Neurochem. 81, 307–313 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Hamdane, M. et al. p25/Cdk5-mediated retinoblastoma phosphorylation is an early event in neuronal cell death. J. Cell Sci. 118, 1291–1298 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Thomas, B.J. & Rothstein, R. The genetic control of direct-repeat recombination in Saccharomyces: the effect of rad52 and rad1 on mitotic recombination at GAL10, a transcriptionally regulated gene. Genetics 123, 725–738 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Longtine, M.S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We dedicate this work in fond memory of our colleague, Cora Styles. We thank A. Hauser for technical assistance, P. Shah and D. Bishop for guidance with CHEF analysis and K. Shokat and E. O'Shea for generously sharing strains. This work was supported by grant R01 GM60443 from the US National Institutes of Health (S.J.K.) and grant PBZ-Min-015/P05/2004 from the Polish Ministry of Education and Science (R.W.). A.J. was supported by the University of Chicago Medical Scientist Training Program and an American Heart Association Greater Midwest predoctoral fellowship, K.K. by the University of Chicago's US National Institutes of Health Cancer Biology Training Grant and S.J.K. by a Leukemia & Lymphoma Society Scholar award.

Author information

Authors and Affiliations

Authors

Contributions

R.W. and A.J. conceived, performed and analyzed experiments and cowrote the manuscript; K.K. and F.S. performed and analyzed experiments; S.J.K. conceived and analyzed experiments and edited the manuscript.

Corresponding author

Correspondence to Stephen J Kron.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wysocki, R., Javaheri, A., Kristjansdottir, K. et al. CDK Pho85 targets CDK inhibitor Sic1 to relieve yeast G1 checkpoint arrest after DNA damage. Nat Struct Mol Biol 13, 908–914 (2006). https://doi.org/10.1038/nsmb1139

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1139

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing