Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activator-specific recruitment of Mediator in vivo

Abstract

The Mediator complex associates with eukaryotic RNA polymerase (Pol) II and is recruited to transcriptional enhancers by activator proteins. It is believed that Mediator is a general component of the Pol II machinery that is crucial to connect enhancer-bound activators to basic transcription factors. However, we show that Mediator does not detectably associate with many highly active Pol II promoters in yeast cells. Furthermore, in response to stress conditions, Mediator association is not directly related to Pol II association and in some cases is not detectable at highly activated promoters. Thus, Mediator is recruited to enhancers in an activator-specific manner, and it does not seem to be a stoichiometric component of the basic Pol II machinery in vivo. Mediator is recruited by many activators involved in stress responses, but not by the major activators that function under optimal conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mediator associates with transcriptionally active GAL1, but not CDC19 and RPS11B.
Figure 2: Mediator association in response to heat shock.
Figure 3: Mediator association in response to copper and osmotic stress.

Similar content being viewed by others

References

  1. Boube, M., Joulia, L., Cribbs, D.L. & Bourbon, H.M. Evidence for a mediator of RNA polymerase II transcriptional regulation conserved from yeast to man. Cell 110, 143–151 (2002).

    Article  CAS  Google Scholar 

  2. Kornberg, R.D. Mediator and the mechanism of transcriptional activation. Trends Biochem. Sci. 30, 235–239 (2005).

    Article  CAS  Google Scholar 

  3. Bjorklund, S. & Gustafsson, C.M. The yeast Mediator complex and its regulation. Trends Biochem. Sci. 30, 240–244 (2005).

    Article  Google Scholar 

  4. Kim, Y.J. & Lis, J.T. Interactions between subunits of Drosophila Mediator and activator proteins. Trends Biochem. Sci. 30, 245–249 (2005).

    Article  CAS  Google Scholar 

  5. Conaway, R.C., Sato, S., Tomomori-Sato, C., Yao, T. & Conaway, J.W. The mammalian Mediator complex and its role in transcriptional regulation. Trends Biochem. Sci. 30, 250–255 (2005).

    Article  CAS  Google Scholar 

  6. Malik, S. & Roeder, R.G. Dynamic regulation of Pol II transcription by the mammalian Mediator complex. Trends Biochem. Sci. 30, 256–263 (2005).

    Article  CAS  Google Scholar 

  7. Chadick, J.Z. & Asturias, F.J. Structure of eukaryotic Mediator complexes. Trends Biochem. Sci. 30, 264–271 (2005).

    Article  CAS  Google Scholar 

  8. Thompson, C.M. & Young, R.A. General requirement for RNA polymerase II holoenzymes in vivo. Proc. Natl. Acad. Sci. USA 92, 4587–4590 (1995).

    Article  CAS  Google Scholar 

  9. Holstege, F.C. et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717–728 (1998).

    Article  CAS  Google Scholar 

  10. Kuras, L. & Struhl, K. Binding of TBP to promoters in vivo is stimulated by activators and requires Pol II holoenzyme. Nature 399, 609–612 (1999).

    Article  CAS  Google Scholar 

  11. Kuras, L., Kosa, P., Mencia, M. & Struhl, K. TAF-containing and TAF-independent forms of transcriptionally active TBP in vivo. Science 288, 1244–1248 (2000).

    Article  CAS  Google Scholar 

  12. Li, X.-Y., Virbasius, A., Zhu, X. & Green, M.R. Enhancement of TBP binding by activators and general transcription factors. Nature 399, 605–609 (1999).

    Article  CAS  Google Scholar 

  13. Cosma, M.P., Tanaka, T. & Nasmyth, K. Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell 97, 299–311 (1999).

    Article  CAS  Google Scholar 

  14. Bhoite, L.T., Yu, Y. & Stillman, D.J. The Swi5 activator recruits the Mediator complex to the HO promoter without RNA polymerase II. Genes Dev. 15, 2457–2469 (2001).

    Article  CAS  Google Scholar 

  15. Bryant, G.O. & Ptashne, M. Independent recruitment in vivo by Gal4 of two complexes required for transcription. Mol. Cell 11, 1301–1309 (2003).

    Article  CAS  Google Scholar 

  16. Cosma, M.P., Panizza, S. & Nasmyth, K. Cdk1 triggers association of RNA polymerase to cell cycle promoters only after recruitment of the mediator by SBF. Mol. Cell 7, 1213–1220 (2001).

    Article  CAS  Google Scholar 

  17. Kuras, L., Borggrefe, T. & Kornberg, R.D. Association of the Mediator complex with enhancers of active genes. Proc. Natl. Acad. Sci. USA 100, 13887–13891 (2003).

    Article  CAS  Google Scholar 

  18. Lee, D. & Lis, J.T. Transcriptional activation independent of TFIIH kinase and the RNA polymerase II mediator in vivo. Nature 393, 389–392 (1998).

    Article  CAS  Google Scholar 

  19. Lee, D.K., Kim, S. & Lis, J.T. Different upstream transcriptional activators have distinct coactivator requirements. Genes Dev. 13, 2934–2939 (1999).

    Article  CAS  Google Scholar 

  20. McNeil, J.B., Agah, H. & Bentley, D. Activated transcription independent of the RNA polymerase II holoenzyme in budding yeast. Genes Dev. 12, 2510–2521 (1998).

    Article  CAS  Google Scholar 

  21. Zhang, F., Sumibcay, L., Hinnebusch, A.G. & Swanson, M.J. A triad of subunits from the Gal11/tail domain of Srb mediator is an in vivo target of transcriptional activator Gcn4. Mol. Cell. Biol. 24, 6871–6886 (2004).

    Article  CAS  Google Scholar 

  22. Gadbois, E.L., Chao, D.M., Reese, J.C., Green, M.R. & Young, R.A. Functional antagonism between RNA polymerase II holoenzyme and global negative regulator NC2 in vivo. Proc. Natl. Acad. Sci. USA 94, 3145–3150 (1997).

    Article  CAS  Google Scholar 

  23. Marion, R.M. et al. Sfp1 is a stress- and nutrient-sensitive regulator of ribosomal protein gene expression. Proc. Natl. Acad. Sci. USA 101, 14315–14322 (2004).

    Article  CAS  Google Scholar 

  24. Wade, J.T., Hall, D.B. & Struhl, K. The transcription factor Ifh1 is a key regulator of yeast ribosomal genes. Nature 432, 1054–1058 (2004).

    Article  CAS  Google Scholar 

  25. Schawalder, S.B. et al. Growth-regulated recruitment of Ifh1, an essential ribosomal protein gene activator. Nature 432, 1058–1061 (2004).

    Article  CAS  Google Scholar 

  26. Martin, D.E., Soulard, A. & Hall, M.N. TOR regulates ribosomal protein gene expression via PKA and the Forkhead transcription factor FHL1. Cell 119, 969–979 (2004).

    Article  CAS  Google Scholar 

  27. Rudra, D., Zhao, Y. & Warner, J.R. Central role of the Ifh1-Fhl1 interaction in the synthesis of yeast ribosomal proteins. EMBO J. 24, 533–542 (2005).

    Article  CAS  Google Scholar 

  28. Mencia, M., Moqtaderi, Z., Geisberg, J.V., Kuras, L. & Struhl, K. Activator-specific recruitment of TFIID and regulation of ribosomal protein genes in yeast. Mol. Cell 9, 823–833 (2002).

    Article  CAS  Google Scholar 

  29. Li, X.Y. et al. Selective recruitment of TAFs by yeast upstream activating sequences. Implications for eukaryotic promoter structure. Curr. Biol. 12, 1240–1244 (2002).

    Article  CAS  Google Scholar 

  30. Aparicio, O.M., Geisberg, J.V. & Struhl, K. in Current Protocols in Molecular Biology (eds. Ausubel, F.A. et al.) 21.3.1–21.3.17 (John Wiley & Sons, New York, USA, 2004).

    Google Scholar 

  31. Moqtaderi, Z. & Struhl, K. Genome-wide occupancy of the RNA polymerase III machinery in Saccharomyces cerevisiae reveals loci with incomplete transcription complexes. Mol. Cell. Biol. 24, 4118–4127 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Hall for generating many of the tagged yeast strains, and Z. Moqtaderi and J. Wade for help with the microarray analysis. This work was supported by grants to K.S. from the US National Institutes of Health (GM30186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Struhl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Mediator does not associate with transcriptionally active ribosomal protein genes and glycolytic genes. (PDF 1321 kb)

Supplementary Fig. 2

Mediator preferentially associates with heat-shock response genes upon heat shock. (PDF 1226 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, X., Chou, D. & Struhl, K. Activator-specific recruitment of Mediator in vivo. Nat Struct Mol Biol 13, 117–120 (2006). https://doi.org/10.1038/nsmb1049

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1049

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing