Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Allosteric signaling and dynamics of the clamshell-like NMDA receptor GluN1 N-terminal domain

Abstract

N-methyl-D-aspartate receptors (NMDARs), neuronal glutamate-gated ion channels, are obligatory heterotetramers composed of GluN1 and GluN2 subunits. Each subunit contains two extracellular clamshell-like domains with an agonist-binding domain and a distal N-terminal domain (NTD). The GluN2 NTDs form mobile regulatory domains. In contrast, the dynamics of GluN1 NTD and its contribution to NMDAR function remain poorly understood. Here we show that GluN1 NTD is neither static nor functionally silent. Perturbing the conformation of GluN1 NTD affects both receptor gating and pharmacological properties. GluN1 NTD undergoes structural rearrangements that involve hinge bending and large twisting and untwisting motions, allowing for new intra- and intersubunit contacts. GluN1 NTD acts in trans with GluN2 NTD to influence binding of glutamate but, notably, not of GluN1 coagonist glycine. Our work uncovers a dynamic role of GluN1 NTD in controlling NMDAR function through new interdomain allosteric interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GluN1 NTD hinge mutations affect NMDAR channel activity.
Figure 2: Locking GluN1 NTD in a closed-cleft form downregulates receptor activity.
Figure 3: Impact of GluN1 NTD disulfide trapping on receptor pharmacology.
Figure 4: GluN1 NTD acts in trans and tunes glutamate, but not glycine, sensitivity.
Figure 5: GluN1 NTD undergoes conformational changes during receptor activation.
Figure 6: GluN1 NTD undergoes large conformational changes.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Felder, C.B., Graul, R.C., Lee, A.Y., Merkle, H.P. & Sadee, W. The Venus flytrap of periplasmic binding proteins: an ancient protein module present in multiple drug receptors. AAPS PharmSci 1, E2 (1999).

    Article  CAS  Google Scholar 

  2. Acher, F.C. & Bertrand, H.O. Amino acid recognition by Venus flytrap domains is encoded in an 8-residue motif. Biopolymers 80, 357–366 (2005).

    Article  CAS  Google Scholar 

  3. Quiocho, F.A. & Ledvina, P.S. Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes. Mol. Microbiol. 20, 17–25 (1996).

    Article  CAS  Google Scholar 

  4. Chen, G.Q., Cui, C., Mayer, M.L. & Gouaux, E. Functional characterization of a potassium-selective prokaryotic glutamate receptor. Nature 402, 817–821 (1999).

    Article  CAS  Google Scholar 

  5. Janovjak, H., Sandoz, G. & Isacoff, E.Y. A modern ionotropic glutamate receptor with a K+ selectivity signature sequence. Nat. Commun. 2, 232 (2011).

    Article  CAS  Google Scholar 

  6. Rondard, P., Goudet, C., Kniazeff, J., Pin, J.P. & Prezeau, L. The complexity of their activation mechanism opens new possibilities for the modulation of mGlu and GABAB class C G protein-coupled receptors. Neuropharmacology 60, 82–92 (2011).

    Article  CAS  Google Scholar 

  7. Traynelis, S.F. et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 62, 405–496 (2010).

    Article  CAS  Google Scholar 

  8. Sobolevsky, A.I., Rosconi, M.P. & Gouaux, E. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462, 745–756 (2009).

    Article  CAS  Google Scholar 

  9. Das, U., Kumar, J., Mayer, M.L. & Plested, A.J. Domain organization and function in GluK2 subtype kainate receptors. Proc. Natl. Acad. Sci. USA 107, 8463–8468 (2010).

    Article  CAS  Google Scholar 

  10. Mayer, M.L. Glutamate receptors at atomic resolution. Nature 440, 456–462 (2006).

    Article  CAS  Google Scholar 

  11. Mayer, M.L. Emerging models of glutamate receptor ion channel structure and function. Structure 19, 1370–1380 (2011).

    Article  CAS  Google Scholar 

  12. Ayalon, G., Segev, E., Elgavish, S. & Stern-Bach, Y. Two regions in the N-terminal domain of ionotropic glutamate receptor 3 form the subunit oligomerization interfaces that control subtype-specific receptor assembly. J. Biol. Chem. 280, 15053–15060 (2005).

    Article  CAS  Google Scholar 

  13. Jin, R. et al. Crystal structure and association behaviour of the GluR2 amino-terminal domain. EMBO J. 28, 1812–1823 (2009).

    Article  CAS  Google Scholar 

  14. Hansen, K.B., Furukawa, H. & Traynelis, S.F. Control of assembly and function of glutamate receptors by the amino-terminal domain. Mol. Pharmacol. 78, 535–549 (2010).

    Article  CAS  Google Scholar 

  15. Rossmann, M. et al. Subunit-selective N-terminal domain associations organize the formation of AMPA receptor heteromers. EMBO J. 30, 959–971 (2011).

    Article  CAS  Google Scholar 

  16. Kumar, J., Schuck, P. & Mayer, M.L. Structure and assembly mechanism for heteromeric kainate receptors. Neuron 71, 319–331 (2011).

    Article  CAS  Google Scholar 

  17. Paoletti, P. Molecular basis of NMDA receptor functional diversity. Eur. J. Neurosci. 33, 1351–1365 (2011).

    Article  Google Scholar 

  18. Gielen, M., Siegler Retchless, B., Mony, L., Johnson, J.W. & Paoletti, P. Mechanism of differential control of NMDA receptor activity by NR2 subunits. Nature 459, 703–707 (2009).

    Article  CAS  Google Scholar 

  19. Karakas, E., Simorowski, N. & Furukawa, H. Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors. Nature 475, 249–253 (2011).

    Article  CAS  Google Scholar 

  20. Karakas, E., Simorowski, N. & Furukawa, H. Structure of the zinc-bound amino-terminal domain of the NMDA receptor NR2B subunit. EMBO J. 28, 3910–3920 (2009).

    Article  CAS  Google Scholar 

  21. Farina, A.N. et al. Separation of domain contacts is required for heterotetrameric assembly of functional NMDA receptors. J. Neurosci. 31, 3565–3579 (2011).

    Article  CAS  Google Scholar 

  22. Stroebel, D., Carvalho, S. & Paoletti, P. Functional evidence for a twisted conformation of the NMDA receptor GluN2A subunit N-terminal domain. Neuropharmacology 60, 151–158 (2011).

    Article  CAS  Google Scholar 

  23. Vermersch, P.S., Tesmer, J.J., Lemon, D.D. & Quiocho, F.A. A Pro to Gly mutation in the hinge of the arabinose-binding protein enhances binding and alters specificity. Sugar-binding and crystallographic studies. J. Biol. Chem. 265, 16592–16603 (1990).

    CAS  PubMed  Google Scholar 

  24. Marvin, J.S. & Hellinga, H.W. Manipulation of ligand binding affinity by exploitation of conformational coupling. Nat. Struct. Biol. 8, 795–798 (2001).

    Article  CAS  Google Scholar 

  25. Telmer, P.G. & Shilton, B.H. Insights into the conformational equilibria of maltose-binding protein by analysis of high affinity mutants. J. Biol. Chem. 278, 34555–34567 (2003).

    Article  CAS  Google Scholar 

  26. Millet, O., Hudson, R.P. & Kay, L.E. The energetic cost of domain reorientation in maltose-binding protein as studied by NMR and fluorescence spectroscopy. Proc. Natl. Acad. Sci. USA 100, 12700–12705 (2003).

    Article  CAS  Google Scholar 

  27. Dwyer, M.A. & Hellinga, H.W. Periplasmic binding proteins: a versatile superfamily for protein engineering. Curr. Opin. Struct. Biol. 14, 495–504 (2004).

    Article  CAS  Google Scholar 

  28. Rosenmund, C., Clements, J.D. & Westbrook, G.L. Nonuniform probability of glutamate release at a hippocampal synapse. Science 262, 754–757 (1993).

    Article  CAS  Google Scholar 

  29. Furukawa, H. & Gouaux, E. Mechanisms of activation, inhibition and specificity: crystal structures of the NMDA receptor NR1 ligand-binding core. EMBO J. 22, 2873–2885 (2003).

    Article  CAS  Google Scholar 

  30. Sullivan, J.M. et al. Identification of two cysteine residues that are required for redox modulation of the NMDA subtype of glutamate receptor. Neuron 13, 929–936 (1994).

    Article  CAS  Google Scholar 

  31. Mony, L., Kew, J.N., Gunthorpe, M.J. & Paoletti, P. Allosteric modulators of NR2B-containing NMDA receptors: molecular mechanisms and therapeutic potential. Br. J. Pharmacol. 157, 1301–1317 (2009).

    Article  CAS  Google Scholar 

  32. Gielen, M. et al. Structural rearrangements of NR1/NR2A NMDA receptors during allosteric inhibition. Neuron 57, 80–93 (2008).

    Article  CAS  Google Scholar 

  33. Mony, L., Zhu, S., Carvalho, S. & Paoletti, P. Molecular basis of positive allosteric modulation of GluN2B NMDA receptors by polyamines. EMBO J. 30, 3134–3146 (2011).

    Article  CAS  Google Scholar 

  34. Williams, K. Ifenprodil discriminates subtypes of the N-methyl-D-aspartate receptor: selectivity and mechanisms at recombinant heteromeric receptors. Mol. Pharmacol. 44, 851–859 (1993).

    CAS  PubMed  Google Scholar 

  35. Rachline, J., Perin-Dureau, F., Le Goff, A., Neyton, J. & Paoletti, P. The micromolar zinc-binding domain on the NMDA receptor subunit NR2B. J. Neurosci. 25, 308–317 (2005).

    Article  CAS  Google Scholar 

  36. Banke, T.G., Dravid, S.M. & Traynelis, S.F. Protons trap NR1/NR2B NMDA receptors in a nonconducting state. J. Neurosci. 25, 42–51 (2005).

    Article  CAS  Google Scholar 

  37. Lee, C.H. & Gouaux, E. Amino terminal domains of the NMDA receptor are organized as local heterodimers. PLoS ONE 6, e19180 (2011).

    Article  CAS  Google Scholar 

  38. Armstrong, N., Jasti, J., Beich-Frandsen, M. & Gouaux, E. Measurement of conformational changes accompanying desensitization in an ionotropic glutamate receptor. Cell 127, 85–97 (2006).

    Article  CAS  Google Scholar 

  39. Zheng, F. et al. Allosteric interaction between the amino terminal domain and the ligand binding domain of NR2A. Nat. Neurosci. 4, 894–901 (2001).

    Article  CAS  Google Scholar 

  40. Bahar, I. & Rader, A.J. Coarse-grained normal mode analysis in structural biology. Curr. Opin. Struct. Biol. 15, 586–592 (2005).

    Article  CAS  Google Scholar 

  41. Taly, A. et al. Normal mode analysis suggests a quaternary twist model for the nicotinic receptor gating mechanism. Biophys. J. 88, 3954–3965 (2005).

    Article  CAS  Google Scholar 

  42. Jiang, R. et al. Tightening of the ATP-binding sites induces the opening of P2X receptor channels. EMBO J. 31, 2134–2143 (2012).

    Article  CAS  Google Scholar 

  43. Dutta, A., Shrivastava, I.H., Sukumaran, M., Greger, I.H. & Bahar, I. Comparative dynamics of NMDA- and AMPA-glutamate receptor N-terminal domains. Structure 20, 1838–1849 (2012).

    Article  CAS  Google Scholar 

  44. Burger, P.B. et al. Mapping the binding of GluN2B-selective NMDA receptor negative allosteric modulators. 82, 344–359. Mol. Pharmacol. (2012).

  45. Kumar, J. & Mayer, M.L. Crystal structures of the glutamate receptor ion channel GluK3 and GluK5 amino-terminal domains. J. Mol. Biol. 404, 680–696 (2010).

    Article  CAS  Google Scholar 

  46. Birdsey-Benson, A., Gill, A., Henderson, L.P. & Madden, D.R. Enhanced efficacy without further cleft closure: reevaluating twist as a source of agonist efficacy in AMPA receptors. J. Neurosci. 30, 1463–1470 (2010).

    Article  CAS  Google Scholar 

  47. Kumar, J., Schuck, P., Jin, R. & Mayer, M.L. The N-terminal domain of GluR6-subtype glutamate receptor ion channels. Nat. Struct. Mol. Biol. 16, 631–638 (2009).

    Article  CAS  Google Scholar 

  48. Clayton, A. et al. Crystal structure of the GluR2 amino-terminal domain provides insights into the architecture and assembly of ionotropic glutamate Receptors. J. Mol. Biol. 392, 1125–1132 (2009).

    Article  CAS  Google Scholar 

  49. Sukumaran, M. et al. Dynamics and allosteric potential of the AMPA receptor N-terminal domain. EMBO J. 30, 972–982 (2011).

    Article  CAS  Google Scholar 

  50. Jensen, M.H., Sukumaran, M., Johnson, C.M., Greger, I.H. & Neuweiler, H. Intrinsic motions in the N-terminal domain of an ionotropic glutamate receptor detected by fluorescence correlation spectroscopy. J. Mol. Biol. 414, 96–105 (2011).

    Article  CAS  Google Scholar 

  51. Plested, A.J. & Mayer, M.L. AMPA receptor ligand binding domain mobility revealed by functional cross linking. J. Neurosci. 29, 11912–11923 (2009).

    Article  CAS  Google Scholar 

  52. Regalado, M.P., Villarroel, A. & Lerma, J. Intersubunit cooperativity in the NMDA receptor. Neuron 32, 1085–1096 (2001).

    Article  CAS  Google Scholar 

  53. Salussolia, C.L., Prodromou, M.L., Borker, P. & Wollmuth, L.P. Arrangement of subunits in functional NMDA receptors. J. Neurosci. 31, 11295–11304 (2011).

    Article  CAS  Google Scholar 

  54. Riou, M., Stroebel, D., Edwardson, J.M. & Paoletti, P. An alternating GluN1–2-1–2 subunit arrangement in mature NMDA receptors. PLoS ONE 7, e35134 (2012).

    Article  CAS  Google Scholar 

  55. Dalva, M.B. et al. EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell 103, 945–956 (2000).

    Article  CAS  Google Scholar 

  56. Dalmau, J. et al. Paraneoplastic anti-N-methyl-d-aspartate receptor encephalitis associated with ovarian teratoma. Ann. Neurol. 61, 25–36 (2007).

    Article  CAS  Google Scholar 

  57. Dalmau, J. et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol. 7, 1091–1098 (2008).

    Article  CAS  Google Scholar 

  58. Eswar, N. et al. Comparative protein structure modeling using Modeller. in Curr. Protoc. Bioinformatics 15, 5.6 (2006).

    Article  Google Scholar 

  59. Hinsen, K. Analysis of domain motions by approximate normal mode calculations. Proteins 33, 417–429 (1998).

    Article  CAS  Google Scholar 

  60. Tama, F. & Sanejouand, Y.H. Conformational change of proteins arising from normal mode calculations. Protein Eng. 14, 1–6 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fondation pour la Recherche Médicale (“Equipe FRM” grant DEQ20081213996 to P.P.; “bourse FRM” to S.Z.), Université-Pierre-et-Marie-Curie (to S.Z.) and the China Scholarship Council (to S.Z.). We thank M. Gielen for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.Z. designed and performed experiments, and analyzed data. D.S. designed experiments and analyzed structural data. C.A.Y. performed and analyzed the single-channel recordings. A.T. performed the NMA. P.P. supervised the work and participated in data analysis. S.Z. and P.P. wrote the manuscript.

Corresponding author

Correspondence to Pierre Paoletti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1–4 (PDF 2035 kb)

Supplementary Movie 1

Motions observed in mode 9 of the Normal Mode Analysis. The GluN2B NTD is shown in grey and the GluN1 NTD in cyan (upper lobe) and yellow (lower lobe). GluN2B NTD and GluN1 NTD upper lobes were superimposed to highlight the relative motion of GluN1 NTD lower lobe. The GluN1 NTD undergoes almost pure twisting-untwisting motions. The movie illustrates the dihedrals vectors that were used to measure the twist-untwist interlobe motions, then... untwist conformation of the GluN1 NTD. (MOV 15146 kb)

Supplementary Movie 2

Motions observed in mode 8 of the Normal Mode Analysis. The GluN2B NTD is shown in grey and the GluN1 NTD in cyan (upper lobe) and yellow (lower lobe). The GluN1 NTD undergoes a large interlobe twisting-opening and untwisting-closure motion. Note also the rotation movement between the two NTDs at the level of the upper lobe-upper lobe interface. (MOV 11952 kb)

Supplementary Movie 3

Motions observed in mode 12 of the Normal Mode Analysis. The GluN2B NTD is shown in grey and the GluN1 NTD in cyan (upper lobe) and yellow (lower lobe). GluN2B and GluN1 NTD upper lobes were superimposed... (MOV 7692 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, S., Stroebel, D., Yao, C. et al. Allosteric signaling and dynamics of the clamshell-like NMDA receptor GluN1 N-terminal domain. Nat Struct Mol Biol 20, 477–485 (2013). https://doi.org/10.1038/nsmb.2522

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2522

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing