Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A glutamate switch controls voltage-sensitive phosphatase function

Abstract

The Ciona intestinalis voltage-sensing phosphatase (Ci-VSP) couples a voltage-sensing domain (VSD) to a lipid phosphatase that is similar to the tumor suppressor PTEN. How the VSD controls enzyme function has been unclear. Here, we present high-resolution crystal structures of the Ci-VSP enzymatic domain that reveal conformational changes in a crucial loop, termed the 'gating loop', that controls access to the active site by a mechanism in which residue Glu411 directly competes with substrate. Structure-based mutations that restrict gating loop conformation impair catalytic function and demonstrate that Glu411 also contributes to substrate selectivity. Structure-guided mutations further define an interaction between the gating loop and linker that connects the phosphatase to the VSD for voltage control of enzyme activity. Together, the data suggest that functional coupling between the gating loop and the linker forms the heart of the regulatory mechanism that controls voltage-dependent enzyme activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the Ci-VSP catalytic domain and comparison with PTEN.
Figure 2: Comparison of Ci-VSP intracellular domain structures reveals gating loop movements.
Figure 3: Comparison of Ci-VSP active site P-loop conformations.
Figure 4: Functional studies of Ci-VSP active site mutants.
Figure 5: Tests of gating loop functional importance.
Figure 6: Structure of a Ci-VSP–IP3 complex.
Figure 7: Ci-VSP linker–gating loop coupling.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Murata, Y., Iwasaki, H., Sasaki, M., Inaba, K. & Okamura, Y. Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435, 1239–1243 (2005).

    Article  CAS  Google Scholar 

  2. Okamura, Y., Murata, Y. & Iwasaki, H. Voltage-sensing phosphatase: actions and potentials. J. Physiol. (Lond.) 587, 513–520 (2009).

    Article  CAS  Google Scholar 

  3. Worby, C.A. & Dixon, J.E. Phosphoinositide phosphatases: emerging roles as voltage sensors? Mol. Interv. 5, 274–277 (2005).

    Article  CAS  Google Scholar 

  4. Okamura, Y. & Dixon, J.E. Voltage-sensing phosphatase: its molecular relationship with PTEN. Physiology (Bethesda) 26, 6–13 (2011).

    CAS  Google Scholar 

  5. Kohout, S.C., Ulbrich, M.H., Bell, S.C. & Isacoff, E.Y. Subunit organization and functional transitions in Ci-VSP. Nat. Struct. Mol. Biol. 15, 106–108 (2008).

    Article  CAS  Google Scholar 

  6. Villalba-Galea, C.A., Miceli, F., Taglialatela, M. & Bezanilla, F. Coupling between the voltage-sensing and phosphatase domains of Ci-VSP. J. Gen. Physiol. 134, 5–14 (2009).

    Article  CAS  Google Scholar 

  7. Kohout, S.C. et al. Electrochemical coupling in the voltage-dependent phosphatase Ci-VSP. Nat. Chem. Biol. 6, 369–375 (2010).

    Article  CAS  Google Scholar 

  8. Jia, Z., Barford, D., Flint, A.J. & Tonks, N.K. Structural basis for phosphotyrosine peptide recognition by protein tyrosine phosphatase 1B. Science 268, 1754–1758 (1995).

    Article  CAS  Google Scholar 

  9. Barford, D., Flint, A.J. & Tonks, N.K. Crystal structure of human protein tyrosine phosphatase 1B. Science 263, 1397–1404 (1994).

    Article  CAS  Google Scholar 

  10. Andersen, J.N. et al. Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol. Cell. Biol. 21, 7117–7136 (2001).

    Article  CAS  Google Scholar 

  11. Tabernero, L., Aricescu, A.R., Jones, E.Y. & Szedlacsek, S.E. Protein tyrosine phosphatases: structure-function relationships. FEBS J. 275, 867–882 (2008).

    Article  CAS  Google Scholar 

  12. Lemmon, M.A. Membrane recognition by phospholipid-binding domains. Nat. Rev. Mol. Cell Biol. 9, 99–111 (2008).

    Article  CAS  Google Scholar 

  13. Matsuda, M. et al. Crystal structure of the cytoplasmic phosphatase and tensin homolog (PTEN)-like region of Ciona intestinalis voltage-sensing phosphatase provides insight into substrate specificity and redox regulation of the phosphoinositide phosphatase activity. J. Biol. Chem. 286, 23368–23377 (2011).

    Article  CAS  Google Scholar 

  14. Denu, J.M., Stuckey, J.A., Saper, M.A. & Dixon, J.E. Form and function in protein dephosphorylation. Cell 87, 361–364 (1996).

    Article  CAS  Google Scholar 

  15. Lee, J.O. et al. Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell 99, 323–334 (1999).

    Article  CAS  Google Scholar 

  16. Sarmiento, M. et al. Structural basis of plasticity in protein tyrosine phosphatase 1B substrate recognition. Biochemistry 39, 8171–8179 (2000).

    Article  CAS  Google Scholar 

  17. Iwasaki, H. et al. A voltage-sensing phosphatase, Ci-VSP, which shares sequence identity with PTEN, dephosphorylates phosphatidylinositol 4,5-bisphosphate. Proc. Natl. Acad. Sci. USA 105, 7970–7975 (2008).

    Article  CAS  Google Scholar 

  18. Murata, Y. & Okamura, Y. Depolarization activates the phosphoinositide phosphatase Ci-VSP, as detected in Xenopus oocytes coexpressing sensors of PIP2. J. Physiol. (Lond.) 583, 875–889 (2007).

    Article  CAS  Google Scholar 

  19. Halaszovich, C.R., Schreiber, D.N. & Oliver, D. Ci-VSP is a depolarization-activated phosphatidylinositol-4,5-bisphosphate and phosphatidylinositol-3,4,5-trisphosphate 5′-phosphatase. J. Biol. Chem. 284, 2106–2113 (2009).

    Article  CAS  Google Scholar 

  20. Maehama, T. & Dixon, J.E. PTEN: a tumour suppressor that functions as a phospholipid phosphatase. Trends Cell Biol. 9, 125–128 (1999).

    Article  CAS  Google Scholar 

  21. Maehama, T., Taylor, G.S. & Dixon, J.E. PTEN and myotubularin: novel phosphoinositide phosphatases. Annu. Rev. Biochem. 70, 247–279 (2001).

    Article  CAS  Google Scholar 

  22. Bezanilla, F. How membrane proteins sense voltage. Nat. Rev. Mol. Cell Biol. 9, 323–332 (2008).

    Article  CAS  Google Scholar 

  23. Isom, D.G., Cannon, B.R., Castaneda, C.A., Robinson, A. & Garcia-Moreno, B. High tolerance for ionizable residues in the hydrophobic interior of proteins. Proc. Natl. Acad. Sci. USA 105, 17784–17788 (2008).

    Article  CAS  Google Scholar 

  24. Yerushalmi, H. & Schuldiner, S. An essential glutamyl residue in EmrE, a multidrug antiporter from Escherichia coli. J. Biol. Chem. 275, 5264–5269 (2000).

    Article  CAS  Google Scholar 

  25. Liu, L., Baase, W.A., Michael, M.M. & Matthews, B.W. Use of stabilizing mutations to engineer a charged group within a ligand-binding hydrophobic cavity in T4 lysozyme. Biochemistry 48, 8842–8851 (2009).

    Article  CAS  Google Scholar 

  26. Zheleznova, E.E., Markham, P.N., Neyfakh, A.A. & Brennan, R.G. Structural basis of multidrug recognition by BmrR, a transcription activator of a multidrug transporter. Cell 96, 353–362 (1999).

    Article  CAS  Google Scholar 

  27. Muth, T.R. & Schuldiner, S. A membrane-embedded glutamate is required for ligand binding to the multidrug transporter EmrE. EMBO J. 19, 234–240 (2000).

    Article  CAS  Google Scholar 

  28. Shoichet, B.K., Baase, W.A., Kuroki, R. & Matthews, B.W. A relationship between protein stability and protein function. Proc. Natl. Acad. Sci. USA 92, 452–456 (1995).

    Article  CAS  Google Scholar 

  29. Iijima, M., Huang, Y.E., Luo, H.R., Vazquez, F. & Devreotes, P.N. Novel mechanism of PTEN regulation by its phosphatidylinositol 4,5-bisphosphate binding motif is critical for chemotaxis. J. Biol. Chem. 279, 16606–16613 (2004).

    Article  CAS  Google Scholar 

  30. Rahdar, M. et al. A phosphorylation-dependent intramolecular interaction regulates the membrane association and activity of the tumor suppressor PTEN. Proc. Natl. Acad. Sci. USA 106, 480–485 (2009).

    Article  CAS  Google Scholar 

  31. Walker, S.M., Leslie, N.R., Perera, N.M., Batty, I.H. & Downes, C.P. The tumour-suppressor function of PTEN requires an N-terminal lipid-binding motif. Biochem. J. 379, 301–307 (2004).

    Article  CAS  Google Scholar 

  32. Edelhoch, H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 6, 1948–1954 (1967).

    Article  CAS  Google Scholar 

  33. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  34. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  35. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  36. Ratzan, W.J., Evsikov, A.V., Okamura, Y. & Jaffe, L.A. Voltage sensitive phosphoinositide phosphatases of Xenopus: their tissue distribution and voltage dependence. J. Cell. Physiol. 226, 2740–2746 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to D.L.M. from the US National Institutes of Health (NIH), R01 DC007664, and the American Heart Association (AHA), 0740019N, and to E.Y.I. from the NIH, R01 NS035549 and U24 NS057631. Ci-VSP in the pSD64TF vector was provided by Y. Okamura (Osaka University). GFP-PLC-PH, GFP-TAPP-PH and GFP-GRP-PH were provided by T. Meyer (Stanford University), T. Balla (NIH) and J. Falke (University of Colorado), respectively. Kir2.1 was provided by E. Reuveny (Weizmann Institute of Science). We thank members of the Minor and Isacoff labs for support throughout these studies. D.L.M. is an AHA Established Investigator.

Author information

Authors and Affiliations

Authors

Contributions

L.L., S.C.K., S.M., E.Y.I. and D.L.M. conceived the study. L.L., S.C.K., Q.X., S.M. and C.R.K. conducted the experiments and analyzed data. E.Y.I. and D.L.M. analyzed data and provided guidance and support throughout. L.L., S.C.K., E.Y.I. and D.L.M. wrote the paper.

Corresponding author

Correspondence to Daniel L Minor Jr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1–4 (PDF 3378 kb)

Supplementary Movie 1

Morph of 241 Form I copy B (open) and 241 Form II copy B (closed) structures. Members of the hydrophobic α456 pocket are highlighted in yellow. Other colors are as in Figure 1. (MP4 28767 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Kohout, S., Xu, Q. et al. A glutamate switch controls voltage-sensitive phosphatase function. Nat Struct Mol Biol 19, 633–641 (2012). https://doi.org/10.1038/nsmb.2289

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2289

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing