Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mapping the sequence of conformational changes underlying selectivity filter gating in the Kv11.1 potassium channel

Abstract

The potassium channel selectivity filter both discriminates between K+ and sodium ions and contributes to gating of ion flow. Static structures of conducting (open) and nonconducting (inactivated) conformations of this filter are known; however, the sequence of protein rearrangements that connect these two states is not. We show that closure of the selectivity filter gate in the human Kv11.1 K+ channel (also known as hERG, for ether-a-go-go–related gene), a key regulator of the rhythm of the heartbeat, is initiated by K+ exit, followed in sequence by conformational rearrangements of the pore domain outer helix, extracellular turret region, voltage sensor domain, intracellular domains and pore domain inner helix. In contrast to the simple wave-like sequence of events proposed for opening of ligand-gated ion channels, a complex spatial and temporal sequence of widespread domain motions connect the open and inactivated states of the Kv11.1 K+ channel.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of topology and energetics of gating in Kv11.1 channels.
Figure 2: Measurement of inactivation in Kv11.1 channels.
Figure 3: Mutations in the outer turret affect energetics of Kv11.1 inactivation.
Figure 4: Mutations adjacent to the selectivity filter affect a late step in Kv11.1 inactivation.
Figure 5: Mutations in transmembrane and cytoplasmic domains affect dynamics of Kv11.1 inactivation.
Figure 6: External K+ concentration affects energetics of K+ channel inactivation.
Figure 7: Japanese puzzle box model of allosteric control of selectivity filter gating.

Similar content being viewed by others

References

  1. Doyle, D.A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    Article  CAS  Google Scholar 

  2. Yellen, G. The voltage-gated potassium channels and their relatives. Nature 419, 35–42 (2002).

    Article  CAS  Google Scholar 

  3. Bernèche, S. & Roux, B. A gate in the selectivity filter of potassium channels. Structure 13, 591–600 (2005).

    Article  Google Scholar 

  4. Henzler-Wildman, K. & Kern, D. Dynamic personalities of proteins. Nature 450, 964–972 (2007).

    Article  CAS  Google Scholar 

  5. Clarke, O.B. et al. Domain reorientation and rotation of an intracellular assembly regulate conduction in Kir potassium channels. Cell 141, 1018–1029 (2010).

    Article  CAS  Google Scholar 

  6. Cuello, L.G., Jogini, V., Cortes, D.M. & Perozo, E. Structural mechanism of C-type inactivation in K+ channels. Nature 466, 203–208 (2010).

    Article  CAS  Google Scholar 

  7. Long, S.B., Tao, X., Campbell, E.B. & MacKinnon, R. Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450, 376–382 (2007).

    Article  CAS  Google Scholar 

  8. Fersht, A.R. From the first protein structures to our current knowledge of protein folding: delights and scepticisms. Nat. Rev. Mol. Cell Biol. 9, 650–654 (2008).

    Article  CAS  Google Scholar 

  9. Fersht, A.R., Leatherbarrow, R.J. & Wells, T.N.C. Quantitative analysis of structure-activity relationships in engineered proteins by linear free-energy relationships. Nature 322, 284–286 (1986).

    Article  CAS  Google Scholar 

  10. Fersht, A.R., Matouschek, A. & Serrano, L. The folding of an enzyme. I. Theory of protein engineering analysis of stability and pathway of protein folding. J. Mol. Biol. 224, 771–782 (1992).

    Article  CAS  Google Scholar 

  11. Fersht, A.R. Relationship of Leffler (Bronsted) alpha values and protein folding Phi values to position of transition-state structures on reaction coordinates. Proc. Natl. Acad. Sci. USA 101, 14338–14342 (2004).

    Article  CAS  Google Scholar 

  12. Grosman, C., Zhou, M. & Auerbach, A. Mapping the conformational wave of acetylcholine receptor channel gating. Nature 403, 773–776 (2000).

    Article  CAS  Google Scholar 

  13. Purohit, P., Mitra, A. & Auerbach, A. A stepwise mechanism for acetylcholine receptor channel gating. Nature 446, 930–933 (2007).

    Article  CAS  Google Scholar 

  14. Zhou, Y., Pearson, J.E. & Auerbach, A. Phi-value analysis of a linear, sequential reaction mechanism: theory and application to ion channel gating. Biophys. J. 89, 3680–3685 (2005).

    Article  CAS  Google Scholar 

  15. Sanguinetti, M.C. & Tristani-Firouzi, M. hERG potassium channels and cardiac arrhythmia. Nature 440, 463–469 (2006).

    Article  CAS  Google Scholar 

  16. Perrin, M.J., Kuchel, P.W., Campbell, T.J. & Vandenberg, J.I. Drug binding to the inactivated state is necessary but not sufficient for high-affinity binding to human ether-a-go-go-related gene channels. Mol. Pharmacol. 74, 1443–1452 (2008).

    Article  CAS  Google Scholar 

  17. Smith, P.L., Baukrowitz, T. & Yellen, G. The inward rectification mechanism of the HERG cardiac potassium channel. Nature 379, 833–836 (1996).

    Article  CAS  Google Scholar 

  18. Vandenberg, J.I., Torres, A.M., Campbell, T.J. & Kuchel, P.W. The HERG K+ channel: progress in understanding the molecular basis of its unusual gating kinetics. Eur. Biophys. J. 33, 89–97 (2004).

    Article  CAS  Google Scholar 

  19. Ju, P. et al. The pore domain outer helix contributes to both activation and inactivation of the HERG K+ channel. J. Biol. Chem. 284, 1000–1008 (2009).

    Article  CAS  Google Scholar 

  20. Liu, J., Zhang, M., Jiang, M. & Tseng, G.N. Structural and functional role of the extracellular s5-p linker in the HERG potassium channel. J. Gen. Physiol. 120, 723–737 (2002).

    Article  CAS  Google Scholar 

  21. Piper, D.R., Hinz, W.A., Tallurri, C.K., Sanguinetti, M.C. & Tristani-Firouzi, M. Regional specificity of human ether-a-go-go-related gene channel activation and inactivation gating. J. Biol. Chem. 280, 7206–7217 (2005).

    Article  CAS  Google Scholar 

  22. Torres, A.M. et al. Structure of the HERG K+ channel S5P extracellular linker: role of an amphipathic alpha-helix in C-type inactivation. J. Biol. Chem. 278, 42136–42148 (2003).

    Article  CAS  Google Scholar 

  23. Zou, A., Xu, Q.P. & Sanguinetti, M.C. A mutation in the pore region of HERG K+ channels expressed in Xenopus oocytes reduces rectification by shifting the voltage dependence of inactivation. J. Physiol. (Lond.) 509, 129–137 (1998).

    Article  CAS  Google Scholar 

  24. Sanguinetti, M.C., Jiang, C., Curran, M.E. & Keating, M.T. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81, 299–307 (1995).

    Article  CAS  Google Scholar 

  25. Wang, S., Liu, S., Morales, M.J., Strauss, H.C. & Rasmusson, R.L. A quantitative analysis of the activation and inactivation kinetics of HERG expressed in Xenopus oocytes. J. Physiol. (Lond.) 502, 45–60 (1997).

    Article  CAS  Google Scholar 

  26. Kiehn, J., Lacerda, A.E. & Brown, A.M. Pathways of HERG inactivation. Am. J. Physiol. 277, H199–H210 (1999).

    CAS  PubMed  Google Scholar 

  27. Gang, H. & Zhang, S. Na+ permeation and block of hERG potassium channels. J. Gen. Physiol. 128, 55–71 (2006).

    Article  CAS  Google Scholar 

  28. Zou, A., Curran, M.E., Keating, M.T. & Sanguinetti, M.C. Single HERG delayed rectifier K+ channels expressed in Xenopus oocytes. Am. J. Physiol. 272, H1309–H1314 (1997).

    Article  CAS  Google Scholar 

  29. Jackson, S.E. & Fersht, A.R. Folding of chymotrypsin inhibitor 2. 1. Evidence for a two-state transition. Biochemistry 30, 10428–10435 (1991).

    Article  CAS  Google Scholar 

  30. Clarke, C.E. et al. Effect of S5P alpha-helix charge mutants on inactivation of hERG K+ channels. J. Physiol. (Lond.) 573, 291–304 (2006).

    Article  CAS  Google Scholar 

  31. Cordero-Morales, J.F. et al. Molecular driving forces determining potassium channel slow inactivation. Nat. Struct. Mol. Biol. 14, 1062–1069 (2007).

    Article  CAS  Google Scholar 

  32. Liu, Y., Jurman, M.E. & Yellen, G. Dynamic rearrangement of the outer mouth of a K+ channel during gating. Neuron 16, 859–867 (1996).

    Article  CAS  Google Scholar 

  33. Cymes, G.D., Grosman, C. & Auerbach, A. Structure of the transition state of gating in the acetylcholine receptor channel pore: a phi-value analysis. Biochemistry 41, 5548–5555 (2002).

    Article  CAS  Google Scholar 

  34. Yellen, G., Sodickson, D., Chen, T.Y. & Jurman, M.E. An engineered cysteine in the external mouth of a K+ channel allows inactivation to be modulated by metal binding. Biophys. J. 66, 1068–1075 (1994).

    Article  CAS  Google Scholar 

  35. Fersht, A.R., Leatherbarrow, R.J. & Wells, T.N. Structure-activity relationships in engineered proteins: analysis of use of binding energy by linear free energy relationships. Biochemistry 26, 6030–6038 (1987).

    Article  CAS  Google Scholar 

  36. Ozkan, S.B., Bahar, I. & Dill, K.A. Transition states and the meaning of Phi-values in protein folding kinetics. Nat. Struct. Biol. 8, 765–769 (2001).

    Article  CAS  Google Scholar 

  37. Cuello, L.G. et al. Structural basis for the coupling between activation and inactivation gates in K+ channels. Nature 466, 272–275 (2010).

    Article  CAS  Google Scholar 

  38. Ferrer, T., Rupp, J., Piper, D.R. & Tristani-Firouzi, M. The S4-S5 linker directly couples voltage sensor movement to the activation gate in the human ether-a-go-go-related gene (hERG) K+ channel. J. Biol. Chem. 281, 12858–12864 (2006).

    Article  CAS  Google Scholar 

  39. Ader, C. et al. Coupling of activation and inactivation gate in a K+-channel: potassium and ligand sensitivity. EMBO J. 28, 2825–2834 (2009).

    Article  CAS  Google Scholar 

  40. Baukrowitz, T. & Yellen, G. Modulation of K+ current by frequency and external [K+]: a tale of two inactivation mechanisms. Neuron 15, 951–960 (1995).

    Article  CAS  Google Scholar 

  41. Cordero-Morales, J.F. et al. Molecular determinants of gating at the potassium-channel selectivity filter. Nat. Struct. Mol. Biol. 13, 311–318 (2006).

    Article  CAS  Google Scholar 

  42. López-Barneo, J., Hoshi, T., Heinemann, S.H. & Aldrich, R.W. Effects of external cations and mutations in the pore region on C-type inactivation of Shaker potassium channels. Receptors Channels 1, 61–71 (1993).

    PubMed  Google Scholar 

  43. Baukrowitz, T. & Yellen, G. Use-dependent blockers and exit rate of the last ion from the multi-ion pore of a K+ channel. Science 271, 653–656 (1996).

    Article  CAS  Google Scholar 

  44. Ogielska, E.M. & Aldrich, R.W. Functional consequences of a decreased potassium affinity in a potassium channel pore. Ion interactions and C-type inactivation. J. Gen. Physiol. 113, 347–358 (1999).

    Article  CAS  Google Scholar 

  45. Jiang, Y. et al. The open pore conformation of potassium channels. Nature 417, 523–526 (2002).

    Article  CAS  Google Scholar 

  46. Auerbach, A. How to turn the reaction coordinate into time. J. Gen. Physiol. 130, 543–546 (2007).

    Article  CAS  Google Scholar 

  47. Piper, D.R., Varghese, A., Sanguinetti, M.C. & Tristani-Firouzi, M. Gating currents associated with intramembrane charge displacement in HERG potassium channels. Proc. Natl. Acad. Sci. USA 100, 10534–10539 (2003).

    Article  CAS  Google Scholar 

  48. Subbiah, R.N. et al. Molecular basis of slow activation of the human ether-a-go-go related gene potassium channel. J. Physiol. (Lond.) 558, 417–431 (2004).

    Article  CAS  Google Scholar 

  49. Bafna, P.A., Jha, A. & Auerbach, A. Aromatic residues {epsilon}Trp-55 and {delta}Trp-57 and the activation of acetylcholine receptor channels. J. Biol. Chem. 284, 8582–8588 (2009).

    Article  CAS  Google Scholar 

  50. Chen, J., Seebohm, G. & Sanguinetti, M.C. Position of aromatic residues in the S6 domain, not inactivation, dictates cisapride sensitivity of HERG and eag potassium channels. Proc. Natl. Acad. Sci. USA 99, 12461–12466 (2002).

    Article  CAS  Google Scholar 

  51. Kurata, H.T. & Fedida, D. A structural interpretation of voltage-gated potassium channel inactivation. Prog. Biophys. Mol. Biol. 92, 185–208 (2006).

    Article  CAS  Google Scholar 

  52. Larsson, H.P. & Elinder, F. A conserved glutamate is important for slow inactivation in K+ channels. Neuron 27, 573–583 (2000).

    Article  CAS  Google Scholar 

  53. Panyi, G. & Deutsch, C. Cross talk between activation and slow inactivation gates of Shaker potassium channels. J. Gen. Physiol. 128, 547–559 (2006).

    Article  CAS  Google Scholar 

  54. Zhao, J.T. et al. Not all hERG pore domain mutations have a severe phenotype: G584S has an inactivation gating defect with mild phenotype compared to G572S, which has a dominant negative trafficking defect and a severe phenotype. J. Cardiovasc. Electrophysiol. 20, 923–930 (2009).

    Article  Google Scholar 

  55. Vandenberg, J.I. et al. Temperature dependence of human ether-a-go-go-related gene K+ currents. Am. J. Physiol. Cell Physiol. 291, C165–C175 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Perozo for providing preprints of papers in press; R.M Graham, A. Husain, L. Lee, B. Martinac, E. Perozo and M. Sunde for participating in critical discussions and for reading the manuscript; and K. Wyse and T. Marciniec for making technical contributions. This research was supported by project grants from the National Health and Medical Research Council of Australia (NHMRC, grants 459402 and 635520) and fellowships to J.V. (NHMRC grant 459401) and to A.H. (National Heart Foundation of Australia grant PF 08S 3956).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamie I Vandenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Table 1 (PDF 1037 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D., Hill, A., Mann, S. et al. Mapping the sequence of conformational changes underlying selectivity filter gating in the Kv11.1 potassium channel. Nat Struct Mol Biol 18, 35–41 (2011). https://doi.org/10.1038/nsmb.1966

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1966

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing