Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An extracellular steric seeding mechanism for Eph-ephrin signaling platform assembly

Abstract

Erythropoetin-producing hepatoma (Eph) receptors are cell-surface protein tyrosine kinases mediating cell-cell communication. Upon activation, they form signaling clusters. We report crystal structures of the full ectodomain of human EphA2 (eEphA2) both alone and in complex with the receptor-binding domain of the ligand ephrinA5 (ephrinA5 RBD). Unliganded eEphA2 forms linear arrays of staggered parallel receptors involving two patches of residues conserved across A-class Ephs. eEphA2–ephrinA5 RBD forms a more elaborate assembly, whose interfaces include the same conserved regions on eEphA2, but rearranged to accommodate ephrinA5 RBD. Cell-surface expression of mutant EphA2s showed that these interfaces are critical for localization at cell-cell contacts and activation-dependent degradation. Our results suggest a 'nucleation' mechanism whereby a limited number of ligand-receptor interactions 'seed' an arrangement of receptors which can propagate into extended signaling arrays.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structures of the complete EphA2 extracellular region (eEphA2) alone and in complex with ephrinA5 RBD.
Figure 2: The eEphA2–ephrinA5 RBD complex: structural changes within eEphA2 and formation of array-like clusters.
Figure 3: EphA2 localization at cell-cell contacts depends on ectodomain clustering.
Figure 4: A mechanism for the nucleation and propagation of EphA2 signaling assemblies.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Pasquale, E.B. Eph-ephrin bidirectional signaling in physiology and disease. Cell 133, 38–52 (2008).

    Article  CAS  Google Scholar 

  2. Eph Nomenclature Committee. Unified nomenclature for Eph family receptors and their ligands, the ephrins. Cell 90, 403–404 (1997).

    Article  Google Scholar 

  3. Himanen, J.P. & Nikolov, D.B. Eph signaling: a structural view. Trends Neurosci. 26, 46–51 (2003).

    Article  CAS  Google Scholar 

  4. Himanen, J.P., Saha, N. & Nikolov, D.B. Cell-cell signaling via Eph receptors and ephrins. Curr. Opin. Cell Biol. 19, 534–542 (2007).

    Article  CAS  Google Scholar 

  5. Gale, N.W. et al. Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis. Neuron 17, 9–19 (1996).

    Article  CAS  Google Scholar 

  6. Himanen, J.P. et al. Crystal structure of an Eph receptor–ephrin complex. Nature 414, 933–938 (2001).

    Article  CAS  Google Scholar 

  7. Cunningham, B.C. et al. Dimerization of the extracellular domain of the human growth hormone receptor by a single hormone molecule. Science 254, 821–825 (1991).

    Article  CAS  Google Scholar 

  8. Himanen, J.P. et al. Repelling class discrimination: ephrin-A5 binds to and activates EphB2 receptor signaling. Nat. Neurosci. 7, 501–509 (2004).

    Article  CAS  Google Scholar 

  9. Chrencik, J.E. et al. Structural and biophysical characterization of the EphB4*ephrinB2 protein-protein interaction and receptor specificity. J. Biol. Chem. 281, 28185–28192 (2006).

    Article  CAS  Google Scholar 

  10. Himanen, J.P. et al. Ligand recognition by A-class Eph receptors: crystal structures of the EphA2 ligand-binding domain and the EphA2–ephrin-A1 complex. EMBO Rep. 10, 722–728 (2009).

    Article  CAS  Google Scholar 

  11. Bowden, T.A. et al. Structural plasticity of Eph receptor A4 facilitates cross-class ephrin signaling. Structure 17, 1386–1397 (2009).

    Article  CAS  Google Scholar 

  12. Smith, F.M. et al. Dissecting the EphA3–Ephrin-A5 interactions using a novel functional mutagenesis screen. J. Biol. Chem. 279, 9522–9531 (2004).

    Article  CAS  Google Scholar 

  13. Lindberg, R.A. & Hunter, T. cDNA cloning and characterization of eck, an epithelial cell receptor protein-tyrosine kinase in the eph/elk family of protein kinases. Mol. Cell. Biol. 10, 6316–6324 (1990).

    Article  CAS  Google Scholar 

  14. Miao, H., Burnett, E., Kinch, M., Simon, E. & Wang, B. Activation of EphA2 kinase suppresses integrin function and causes focal-adhesion-kinase dephosphorylation. Nat. Cell Biol. 2, 62–69 (2000).

    Article  CAS  Google Scholar 

  15. Carter, N., Nakamoto, T., Hirai, H. & Hunter, T. EphrinA1-induced cytoskeletal re-organization requires FAK and p130(cas). Nat. Cell Biol. 4, 565–573 (2002).

    Article  CAS  Google Scholar 

  16. Lin, Y.G. et al. EphA2 overexpression is associated with angiogenesis in ovarian cancer. Cancer 109, 332–340 (2007).

    Article  CAS  Google Scholar 

  17. Zelinski, D.P., Zantek, N.D., Stewart, J.C., Irizarry, A.R. & Kinch, M.S. EphA2 overexpression causes tumorigenesis of mammary epithelial cells. Cancer Res. 61, 2301–2306 (2001).

    CAS  PubMed  Google Scholar 

  18. Kinch, M.S. & Carles-Kinch, K. Overexpression and functional alterations of the EphA2 tyrosine kinase in cancer. Clin. Exp. Metastasis 20, 59–68 (2003).

    Article  CAS  Google Scholar 

  19. Wykosky, J. & Debinski, W. The EphA2 receptor and ephrinA1 ligand in solid tumors: function and therapeutic targeting. Mol. Cancer Res. 6, 1795–1806 (2008).

    Article  CAS  Google Scholar 

  20. Reeves, P.J., Callewaert, N., Contreras, R. & Khorana, H.G. Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK 293S stable mammalian cell line. Proc. Natl. Acad. Sci. USA 99, 13419–13424 (2002).

    Article  CAS  Google Scholar 

  21. Aricescu, A.R., Lu, W. & Jones, E.Y. A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr. D Biol. Crystallogr. 62, 1243–1250 (2006).

    Article  Google Scholar 

  22. Walter, T.S. et al. Lysine methylation as a routine rescue strategy for protein crystallization. Structure 14, 1617–1622 (2006).

    Article  CAS  Google Scholar 

  23. Nikolov, D., Li, C., Lackmann, M., Jeffrey, P. & Himanen, J. Crystal structure of the human ephrin-A5 ectodomain. Protein Sci. 16, 996–1000 (2007).

    Article  CAS  Google Scholar 

  24. Cooper, M.A. et al. Loss of ephrin-A5 function disrupts lens fiber cell packing and leads to cataract. Proc. Natl. Acad. Sci. USA 105, 16620–16625 (2008).

    Article  CAS  Google Scholar 

  25. Zantek, N.D. et al. E-cadherin regulates the function of the EphA2 receptor tyrosine kinase. Cell Growth Differ. 10, 629–638 (1999).

    CAS  PubMed  Google Scholar 

  26. Miura, K., Nam, J.M., Kojima, C., Mochizuki, N. & Sabe, H. EphA2 engages Git1 to suppress Arf6 activity modulating epithelial cell-cell contacts. Mol. Biol. Cell 20, 1949–1959 (2009).

    Article  CAS  Google Scholar 

  27. Orsulic, S. & Kemler, R. Expression of Eph receptors and ephrins is differentially regulated by E-cadherin. J. Cell Sci. 113, 1793–1802 (2000).

    CAS  PubMed  Google Scholar 

  28. Shaw, G., Morse, S., Ararat, M. & Graham, F.L. Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. FASEB J. 16, 869–871 (2002).

    Article  CAS  Google Scholar 

  29. Carvalho, R.F. et al. Silencing of EphA3 through a cis interaction with ephrinA5. Nat. Neurosci. 9, 322–330 (2006).

    Article  CAS  Google Scholar 

  30. Pasquale, E.B. Eph receptor signalling casts a wide net on cell behaviour. Nat. Rev. Mol. Cell Biol. 6, 462–475 (2005).

    Article  CAS  Google Scholar 

  31. Lin, K.T., Sloniowski, S., Ethell, D.W. & Ethell, I.M. Ephrin-B2–induced cleavage of EphB2 receptor is mediated by matrix metalloproteinases to trigger cell repulsion. J. Biol. Chem. 283, 28969–28979 (2008).

    Article  CAS  Google Scholar 

  32. Litterst, C. et al. Ligand binding and calcium influx induce distinct ectodomain/γ-secretase–processing pathways of EphB2 receptor. J. Biol. Chem. 282, 16155–16163 (2007).

    Article  CAS  Google Scholar 

  33. Wimmer-Kleikamp, S.H., Janes, P.W., Squire, A., Bastiaens, P.I. & Lackmann, M. Recruitment of Eph receptors into signaling clusters does not require ephrin contact. J. Cell Biol. 164, 661–666 (2004).

    Article  CAS  Google Scholar 

  34. Vearing, C.J. & Lackmann, M. Eph receptor signalling; dimerisation just isn't enough. Growth Factors 23, 67–76 (2005).

    Article  CAS  Google Scholar 

  35. Egea, J. et al. Regulation of EphA 4 kinase activity is required for a subset of axon guidance decisions suggesting a key role for receptor clustering in Eph function. Neuron 47, 515–528 (2005).

    Article  CAS  Google Scholar 

  36. Davis, S. et al. Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity. Science 266, 816–819 (1994).

    Article  CAS  Google Scholar 

  37. Bocharov, E.V. et al. Spatial structure and pH-dependent conformational diversity of dimeric transmembrane domain of the receptor tyrosine kinase EphA1. J. Biol. Chem. 283, 29385–29395 (2008).

    Article  CAS  Google Scholar 

  38. Thanos, C.D., Goodwill, K.E. & Bowie, J.U. Oligomeric structure of the human EphB2 receptor SAM domain. Science 283, 833–836 (1999).

    Article  CAS  Google Scholar 

  39. Diedrichs, K. & Karplus, P.A. Improved R-factors for diffraction data analysis in macromolecular crystallogaphy. Nat. Struct. Biol. 4, 269–275 (1997).

    Article  Google Scholar 

  40. Bendtsen, J.D., Nielsen, H., von Heijne, G. & Brunak, S. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783–795 (2004).

    Article  Google Scholar 

  41. Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90 (2002).

    Article  CAS  Google Scholar 

  42. Chin, C.N., Sachs, J.N. & Engelman, D.M. Transmembrane homodimerization of receptor-like protein tyrosine phosphatases. FEBS Lett. 579, 3855–3858 (2005).

    Article  CAS  Google Scholar 

  43. Grueninger-Leitch, F., D'Arcy, A., D'Arcy, B. & Chene, C. Deglycosylation of proteins for crystallization using recombinant fusion protein glycosidases. Protein Sci. 5, 2617–2622 (1996).

    Article  CAS  Google Scholar 

  44. Chang, V.T. et al. Glycoprotein structural genomics: solving the glycosylation problem. Structure 15, 267–273 (2007).

    Article  CAS  Google Scholar 

  45. Walter, T.S. et al. A procedure for setting up high-throughput nanolitre crystallization experiments. Crystallization workflow for initial screening, automated storage, imaging and optimization. Acta Crystallogr. D Biol. Crystallogr. 61, 651–657 (2005).

    Article  Google Scholar 

  46. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  47. Leslie, A.G. The integration of macromolecular diffraction data. Acta Crystallogr. D Biol. Crystallogr. 62, 48–57 (2006).

    Article  Google Scholar 

  48. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  49. Cowtan, K. An automated procedure for phase improvement by density modification. Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography 34–38 (1994).

  50. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  51. Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–383 (2007).

    Article  Google Scholar 

  52. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  Google Scholar 

  53. Collaborative Computational Project 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  54. DeLano, W.L. The PyMOL Molecular Graphics System. (DeLano Scientific, San Carlos, California, USA, 2002).

  55. Gouet, P., Courcelle, E., Stuart, D.I. & Metoz, F. ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15, 305–308 (1999).

    Article  CAS  Google Scholar 

  56. Landau, M. et al. ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res. 33, W299–W302 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Walsh for assistance during data collection, B. Janssen for aiding with crystallographic data analysis, T.S. Walter for advice on protein crystallization, M. Jones and W. Lu for technical assistance, R. Gilbert for analytical ultracentrifugation measurements, the Molecular Cytogenetics and Microscopy Core facility of the Wellcome Trust Centre for Human Genetics, in particular K.J. Morris and N. Alsamhouri, for their help with confocal microscopy and D.I. Stuart for critical reading of the manuscript. This research was funded by Cancer Research UK. A.R.A. is funded by the UK Medical Research Council and E.Y.J. by Cancer Research UK. The work was supported by the Wellcome Trust Core Award, grant no. 075491/Z/04.

Author information

Authors and Affiliations

Authors

Contributions

E.S. conducted crystallographic and cellular studies; K.H. performed crystal mounting and oversaw X-ray data collection; G.S. led the MALS analysis; A.R.A. and E.Y.J. participated in study design and oversaw all aspects of the work.

Corresponding authors

Correspondence to A Radu Aricescu or E Yvonne Jones.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Methods and Supplementary Table 1 (PDF 5250 kb)

Supplementary Video 1

Z-stack images of HEK293T cells expressing EphA2 as mVenus-fusion protein (green). EphA2 localizes at cell-cell contacts. (MOV 853 kb)

Supplementary Video 2

Z-stack images of HEK293T cells expressing the EphA2 interface D mutant L254D+V255D as mVenus fusion protein (green). Mutant EphA2 does not localize at cell-cell contacts. (MOV 654 kb)

Supplementary Video 3

Z-stack images of HEK293T cells expressing the EphA2 deletion construct eEphA2EphA2 as mVenus fusion protein (green). This construct lacks all C-terminal intracellular EphA2 domains. eEphA2EphA2 localizes at cell-cell contacts. (MOV 525 kb)

Supplementary Video 4

Z-stack images of HEK293T cells expressing the EphA2 deletion construct eEphA2Δe as mVenus fusion protein (green). This construct lacks the four N-terminal extracellular EphA2 domains LBD, sushi, EGF, FN1. eEphA2Δe does not localize at cell-cell contacts. (MOV 665 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seiradake, E., Harlos, K., Sutton, G. et al. An extracellular steric seeding mechanism for Eph-ephrin signaling platform assembly. Nat Struct Mol Biol 17, 398–402 (2010). https://doi.org/10.1038/nsmb.1782

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1782

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing