Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The HP1–p150/CAF-1 interaction is required for pericentric heterochromatin replication and S-phase progression in mouse cells

Abstract

The heterochromatin protein 1 (HP1)-rich heterochromatin domains next to centromeres are crucial for chromosome segregation during mitosis. This mitotic function requires their faithful reproduction during the preceding S phase, a process whose mechanism and regulation are current puzzles. Here we show that p150, a subunit of chromatin assembly factor 1, has a key role in the replication of pericentric heterochromatin and S-phase progression in mouse cells, independently of its known function in histone deposition. By a combination of depletion and complementation assays in vivo, we link this unique function of p150 to its ability to interact with HP1. Absence of this functional interaction triggers S-phase arrest at the time of replication of pericentromeric heterochromatin, without eliciting known DNA-based checkpoint pathways. Notably, in cells lacking the histone methylases Suv39h, in which pericentric domains do not show HP1 accumulation, p150 is dispensable for S-phase progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Depletion of p150 but not p60 leads to accumulation of cells in early S phase.
Figure 2: Nucleosomal organization in p150- and p60-depleted cells.
Figure 3: Depletion of p150 does not affect the rate of DNA elongation but impairs centromeric DNA replication.
Figure 4: Progression from early to mid-late S phase depends on interaction between p150 and HP1.
Figure 5: S-phase progression is not perturbed in Suv39h dn MEF cells.

Similar content being viewed by others

References

  1. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

    Article  CAS  Google Scholar 

  2. Grewal, S.I. & Jia, S. Heterochromatin revisited. Nat. Rev. Genet. 8, 35–46 (2007).

    Article  CAS  Google Scholar 

  3. Peng, J.C. & Karpen, G.H. Epigenetic regulation of heterochromatic DNA stability. Curr. Opin. Genet. Dev. 18, 204–211 (2008).

    Article  CAS  Google Scholar 

  4. Gilbert, N. et al. Formation of facultative heterochromatin in the absence of HP1. EMBO J. 22, 5540–5550 (2003).

    Article  CAS  Google Scholar 

  5. Maison, C. & Almouzni, G. HP1 and the dynamics of heterochromatin maintenance. Nat. Rev. Mol. Cell Biol. 5, 296–304 (2004).

    Article  CAS  Google Scholar 

  6. Kalitsis, P. & Choo, K.H.A. Centromere DNA of higher eukaryotes. in The Centromere (ed. Choo, K.H.A.) 97–140 (Oxford Univ. Press, New York, 1997).

    Google Scholar 

  7. Guenatri, M., Bailly, D., Maison, C. & Almouzni, G. Mouse centric and pericentric satellite repeats form distinct functional heterochromatin. J. Cell Biol. 166, 493–505 (2004).

    Article  CAS  Google Scholar 

  8. Kaufman, P.D., Kobayashi, R., Kessler, N. & Stillman, B. The p150 and p60 subunits of chromatin assembly factor I: a molecular link between newly synthesized histones and DNA replication. Cell 81, 1105–1114 (1995).

    Article  CAS  Google Scholar 

  9. Polo, S.E. & Almouzni, G. Chromatin assembly: a basic recipe with various flavours. Curr. Opin. Genet. Dev. 16, 104–111 (2006).

    Article  CAS  Google Scholar 

  10. Groth, A., Rocha, W., Verreault, A. & Almouzni, G. Chromatin challenges during DNA replication and repair. Cell 128, 721–733 (2007).

    Article  CAS  Google Scholar 

  11. Cheutin, T. et al. Maintenance of stable heterochromatin domains by dynamic HP1 binding. Science 299, 721–725 (2003).

    Article  CAS  Google Scholar 

  12. Festenstein, R. et al. Modulation of heterochromatin protein 1 dynamics in primary mammalian cells. Science 299, 719–721 (2003).

    Article  CAS  Google Scholar 

  13. Karpen, G.H. & Allshire, R.C. The case for epigenetic effects on centromere identity and function. Trends Genet. 13, 489–496 (1997).

    Article  CAS  Google Scholar 

  14. Folco, H.D., Pidoux, A.L., Urano, T. & Allshire, R.C. Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres. Science 319, 94–97 (2008).

    Article  CAS  Google Scholar 

  15. Verreault, A., Kaufman, P.D., Kobayashi, R. & Stillman, B. Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87, 95–104 (1996).

    Article  CAS  Google Scholar 

  16. Smith, S. & Stillman, B. Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell 58, 15–25 (1989).

    Article  CAS  Google Scholar 

  17. Krude, T. Chromatin assembly factor 1 (CAF-1) colocalizes with replication foci in HeLa cell nuclei. Exp. Cell Res. 220, 304–311 (1995).

    Article  CAS  Google Scholar 

  18. Taddei, A., Roche, D., Sibarita, J.B., Turner, B.M. & Almouzni, G. Duplication and maintenance of heterochromatin domains. J. Cell Biol. 147, 1153–1166 (1999).

    Article  CAS  Google Scholar 

  19. Shibahara, K. & Stillman, B. Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 96, 575–585 (1999).

    Article  CAS  Google Scholar 

  20. Moggs, J.G. et al. A CAF-1/PCNA mediated chromatin assembly pathway triggered by sensing DNA damage. Mol. Cell. Biol. 20, 1206–1218 (2000).

    Article  CAS  Google Scholar 

  21. Murzina, N., Verreault, A., Laue, E. & Stillman, B. Heterochromatin dynamics in mouse cells: interaction between chromatin assembly factor 1 and HP1 proteins. Mol. Cell 4, 529–540 (1999).

    Article  CAS  Google Scholar 

  22. Thiru, A. et al. Structural basis of HP1/PXVXL motif peptide interactions and HP1 localisation to heterochromatin. EMBO J. 23, 489–499 (2004).

    Article  CAS  Google Scholar 

  23. Quivy, J.P. et al. A CAF-1 dependent pool of HP1 during heterochromatin duplication. EMBO J. 23, 3516–3526 (2004).

    Article  CAS  Google Scholar 

  24. Tagami, H., Ray-Gallet, D., Almouzni, G. & Nakatani, Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116, 51–61 (2004).

    Article  CAS  Google Scholar 

  25. Ye, X. et al. Defective S phase chromatin assembly causes DNA damage, activation of the S phase checkpoint, and S phase arrest. Mol. Cell 11, 341–351 (2003).

    Article  CAS  Google Scholar 

  26. Hoek, M. & Stillman, B. Chromatin assembly factor 1 is essential and couples chromatin assembly to DNA replication in vivo. Proc. Natl. Acad. Sci. USA 100, 12183–12188 (2003).

    Article  CAS  Google Scholar 

  27. Takami, Y., Ono, T., Fukagawa, T., Shibahara, K. & Nakayama, T. Essential role of chromatin assembly factor-1-mediated rapid nucleosome assembly for DNA replication and cell division in vertebrate cells. Mol. Biol. Cell 18, 129–141 (2007).

    Article  CAS  Google Scholar 

  28. Polo, S.E., Roche, D. & Almouzni, G. New histone incorporation marks sites of UV repair in human cells. Cell 127, 481–493 (2006).

    Article  CAS  Google Scholar 

  29. Dimitrova, D.S. & Berezney, R. The spatio-temporal organization of DNA replication sites is identical in primary, immortalized and transformed mammalian cells. J. Cell Sci. 115, 4037–4051 (2002).

    Article  CAS  Google Scholar 

  30. Nabatiyan, A. & Krude, T. Silencing of chromatin assembly factor 1 in human cells leads to cell death and loss of chromatin assembly during DNA synthesis. Mol. Cell. Biol. 24, 2853–2862 (2004).

    Article  CAS  Google Scholar 

  31. Tibbetts, R.S. et al. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev. 13, 152–157 (1999).

    Article  CAS  Google Scholar 

  32. Paull, T.T. et al. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr. Biol. 10, 886–895 (2000).

    Article  CAS  Google Scholar 

  33. Bartek, J. & Lukas, J. DNA damage checkpoints: from initiation to recovery or adaptation. Curr. Opin. Cell Biol. 19, 238–245 (2007).

    Article  CAS  Google Scholar 

  34. Azuara, V. et al. Heritable gene silencing in lymphocytes delays chromatid resolution without affecting the timing of DNA replication. Nat. Cell Biol. 5, 668–674 (2003).

    Article  CAS  Google Scholar 

  35. Reese, B.E., Bachman, K.E., Baylin, S.B. & Rountree, M.R. The methyl-CpG binding protein MBD1 interacts with the p150 subunit of chromatin assembly factor 1. Mol. Cell. Biol. 23, 3226–3236 (2003).

    Article  CAS  Google Scholar 

  36. Sarraf, S.A. & Stancheva, I. Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly. Mol. Cell 15, 595–605 (2004).

    Article  CAS  Google Scholar 

  37. Peters, A.H. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107, 323–337 (2001).

    Article  CAS  Google Scholar 

  38. Maison, C. et al. Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat. Genet. 30, 329–334 (2002).

    Article  Google Scholar 

  39. Maga, G., Stucki, M., Spadari, S. & Hubscher, U. DNA polymerase switching: I. Replication factor C displaces DNA polymerase α prior to PCNA loading. J. Mol. Biol. 295, 791–801 (2000).

    Article  CAS  Google Scholar 

  40. Houlard, M. et al. CAF-1 is essential for heterochromatin organization in pluripotent embryonic cells. PLoS Genet. 2, e181 (2006).

    Article  Google Scholar 

  41. Kaya, H. et al. FASCIATA genes for chromatin assembly factor-1 in Arabidopsis maintain the cellular organization of apical meristems. Cell 104, 131–142 (2001).

    Article  CAS  Google Scholar 

  42. Schonrock, N., Exner, V., Probst, A., Gruissem, W. & Hennig, L. Functional genomic analysis of CAF-1 mutants in Arabidopsis thaliana. J. Biol. Chem. 281, 9560–9568 (2006).

    Article  Google Scholar 

  43. Kirik, A., Pecinka, A., Wendeler, E. & Reiss, B. The chromatin assembly factor subunit FASCIATA1 is involved in homologous recombination in plants. Plant Cell 18, 2431–2442 (2006).

    Article  CAS  Google Scholar 

  44. Quivy, J.P., Grandi, P. & Almouzni, G. Dimerization of the largest subunit of chromatin assembly factor 1: importance in vitro and during Xenopus early development. EMBO J. 20, 2015–2027 (2001).

    Article  CAS  Google Scholar 

  45. Kaufman, P.D., Kobayashi, R. & Stillman, B. Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor I. Genes Dev. 11, 345–357 (1997).

    Article  CAS  Google Scholar 

  46. Enomoto, S., McCune-Zierath, P., Geraminejad, M., Sanders, M. & Berman, J. Rlf2, a subunit of yeast chromatin assembly factor-I, is required for telomeric chromatin function in vivo. Genes Dev. 11, 358–363 (1997).

    Article  CAS  Google Scholar 

  47. Kats, E.S., Albuquerque, C.P., Zhou, H. & Kolodner, R.D. Checkpoint functions are required for normal S-phase progression in Saccharomyces cerevisiae RCAF- and CAF-I-defective mutants. Proc. Natl. Acad. Sci. USA 103, 3710–3715 (2006).

    Article  CAS  Google Scholar 

  48. Tercero, J.A., Longhese, M.P. & Diffley, J.F. A central role for DNA replication forks in checkpoint activation and response. Mol. Cell 11, 1323–1336 (2003).

    Article  CAS  Google Scholar 

  49. Lambert, S., Watson, A., Sheedy, D.M., Martin, B. & Carr, A.M. Gross chromosomal rearrangements and elevated recombination at an inducible site-specific replication fork barrier. Cell 121, 689–702 (2005).

    Article  CAS  Google Scholar 

  50. Ahn, J.S., Osman, F. & Whitby, M.C. Replication fork blockage by RTS1 at an ectopic site promotes recombination in fission yeast. EMBO J. 24, 2011–2023 (2005).

    Article  CAS  Google Scholar 

  51. Byun, T.S., Pacek, M., Yee, M.C., Walter, J.C. & Cimprich, K.A. Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev. 19, 1040–1052 (2005).

    Article  CAS  Google Scholar 

  52. Zou, L. & Elledge, S.J. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300, 1542–1548 (2003).

    Article  CAS  Google Scholar 

  53. Bartek, J., Lukas, C. & Lukas, J. Checking on DNA damage in S phase. Nat. Rev. Mol. Cell Biol. 5, 792–804 (2004).

    Article  CAS  Google Scholar 

  54. Ben-Yehoyada, M., Gautier, J. & Dupre, A. The DNA damage response during an unperturbed S-phase. DNA Repair (Amst) 6, 914–922 (2007).

    Article  CAS  Google Scholar 

  55. Groth, A. et al. Regulation of replication fork progression through histone supply and demand. Science 318, 1928–1931 (2007).

    Article  CAS  Google Scholar 

  56. Ye, X. & Adams, P.D. Coordination of S-phase events and genome stability. Cell Cycle 2, 185–187 (2003).

    Article  CAS  Google Scholar 

  57. Poot, R.A. et al. The Williams syndrome transcription factor interacts with PCNA to target chromatin remodelling by ISWI to replication foci. Nat. Cell Biol. 6, 1236–1244 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Haber for critical reading of the manuscript and members of our unit for discussions (D. Ray-Gallet, S. Polo, M.K. Ray and J. Chow); S. Huart for quantitative co-localization analyses; N. Murzina (Department of Biochemistry, University of Cambridge) and A. Verreault (IRIC, Université de Montréal, Canada) for the gift of mouse GFPp150 constructs; M. Moné for establishing 3T3Flp cell lines stably expressing GFPp150 proteins (Institute of Molecular Cell Biology, Faculty for Earth and Life Sciences, Vrije Universiteit, Amsterdam). A.G. received support from Délégation Générale pour l'Armement (DGA/DSP/STTC/DT/SH) and Association pour la Recherche sur la Cancer. A.J.L.C. received support from la Ligue Nationale Contre le Cancer. This work was supported by la Ligue Nationale Contre le Cancer (Equipe labellisée la Ligue), the Institut Curie PIC Programs ('Retinoblastome' and 'Replication, Instabilité chromosomique et cancer'), the European Commission Network of Excellence Epigenome (LSHG-CT-2004-503433), ACI-2004-Cancéropole IdF 'Breast cancer and epigenetics, ANR 'CenRNA' NT05-4_42267 and ANR 'FaRC', PCV06_142302.

Author information

Authors and Affiliations

Authors

Contributions

J.-P.Q. and G.A. conceived and designed the experiments; J.-P.Q., A.G., A.J.L.C. and D.R. performed the experiments; J.-P.Q., A.G., A.J.L.C., D.R. and G.A. analyzed the data; J.-P.Q., A.J.L.C. and G.A. wrote the paper.

Corresponding author

Correspondence to Geneviève Almouzni.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Methods (PDF 12287 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quivy, JP., Gérard, A., Cook, A. et al. The HP1–p150/CAF-1 interaction is required for pericentric heterochromatin replication and S-phase progression in mouse cells. Nat Struct Mol Biol 15, 972–979 (2008). https://doi.org/10.1038/nsmb.1470

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1470

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing