Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Monovalent cations mediate formation of native tertiary structure of the Tetrahymena thermophila ribozyme

Abstract

The formation of individual tertiary contacts of the Tetrahymena L-21 Sca I ribozyme has been monitored by hydroxyl radical footprinting and its global conformation by analytical ultracentrifugation as a function of monovalent ion concentration in the absence of divalent ions. Advanced methods of data analysis, which allow the hydroxyl radical reactivity of every nucleotide to be quantified, permit monitoring of each and every structural element of the RNA. Monovalent ion-mediated global compaction of the ribozyme is accompanied by the formation of native tertiary contacts; most native tertiary contacts are evident except several that are located near where divalent ions are observed in crystallographic structures. Non-native tertiary contacts are also observed at low but not high concentrations of monovalent ions. In light of recent studies that have shown that the presence of monovalent ions greatly accelerates the Mg2+-dependent folding of the Tetrahymena ribozyme, the present studies suggest that Na+ concentration changes not only the starting position of the RNA on its folding funnel but also pushes it deep into the well by forming native tertiary contacts and, thus, favoring fast and correct folding pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Summary of the data analysis procedures.
Figure 2: A false-color map of the changes in OH· reactivity for the Tetrahymena ribozyme observed as a function of Na+ concentration.
Figure 3: Structural mapping and classification of the OH· reactivity changes.
Figure 4: Examples of the Na+-dependent folding isotherms derived from the data summarized in the false-color map of Fig. 2.
Figure 5: Values of the Stokes radius and axial ratio (RH and a / b, respectively) derived from sedimentation velocity experiments conducted in CE buffer to which the indicated [NaCl] or [MgCl2] was added.

Similar content being viewed by others

References

  1. Piccirilli, J.A., Vyle, J.S., Caruthers, M.H. & Cech, T.R. Nature 361, 85–88 (1993).

    Article  CAS  Google Scholar 

  2. Downs, W.D. & Cech, T.R. RNA 2, 718–732 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Russell, R., Millett, I.S., Doniach, S. & Herschlag, D. Nature Struct. Biol. 7, 367–370 (2000).

    Article  CAS  Google Scholar 

  4. Buchmueller, K.L., Webb, A.E., Richardson, D.A. & Weeks, K.M. Nature Struct. Biol. 7, 362–366 (2000).

    Article  CAS  Google Scholar 

  5. Fang, X. et al. Biochemistry 39, 11107–11113 (2000).

    Article  CAS  Google Scholar 

  6. Heilman-Miller, S.L., Pan, J., Thirumalai, D. & Woodson, S.A. J. Mol. Biol. 309, 57–68 (2001).

    Article  CAS  Google Scholar 

  7. Heilman-Miller, S.L., Thirumalai, D. & Woodson, S.A. J. Mol. Biol. 306, 1157–1166 (2001).

    Article  CAS  Google Scholar 

  8. Russell, R. & Herschlag, D. J. Mol. Biol. 291, 1155–1167 (1999).

    Article  CAS  Google Scholar 

  9. Silverman, S.K., Deras, M.L., Woodson, S.A., Scaringe, S.A. & Cech, T.R. Biochemistry 39, 12465–12475 (2000).

    Article  CAS  Google Scholar 

  10. Russell, R. et al. Proc. Natl. Acad. Sci. USA 99, 155–160 (2002).

    Article  CAS  Google Scholar 

  11. Deras, M.L., Brenowitz, M., Ralston, C.Y., Chance, M.R. & Woodson, S.A. Biochemistry 39, 10975–10985 (2000).

    Article  CAS  Google Scholar 

  12. Uchida, T., He, Q., Ralston, C.Y., Brenowitz, M. & Chance, M.R. Biochemistry 41, 5799–5806 (2002).

    Article  CAS  Google Scholar 

  13. Strahs, D. & Brenowitz, M. J. Mol. Biol. 244, 494–510 (1994).

    Article  CAS  Google Scholar 

  14. Shadle, S.E. et al. Nucleic Acids Res. 25, 850–860 (1997).

    Article  CAS  Google Scholar 

  15. Celander, D.W. & Cech, T.R. Science 251, 401–407 (1991).

    Article  CAS  Google Scholar 

  16. Sclavi, B., Woodson, S., Sullivan, M., Chance, M.R. & Brenowitz, M. J. Mol. Biol. 266, 144–159 (1997).

    Article  CAS  Google Scholar 

  17. Sclavi, B., Sullivan, M., Chance, M.R., Brenowitz, M. & Woodson, S.A. Science 279, 1940–1943 (1998).

    Article  CAS  Google Scholar 

  18. Ralston, C.Y., He, Q., Brenowitz, M. & Chance, M.R. Nature Struct. Biol. 7, 371–374 (2000).

    Article  CAS  Google Scholar 

  19. Cech, T.R., Damberger, S.H. & Gutell, R.R. Nature Struct. Biol. 1, 273–280 (1994).

    Article  CAS  Google Scholar 

  20. Cate, J.H., Hanna, R.L. & Doudna, J.A. Nature Struct. Biol. 4, 553–558 (1997).

    Article  CAS  Google Scholar 

  21. Cate, J.H. et al. Science 273, 1678–1685 (1996).

    Article  CAS  Google Scholar 

  22. Cate, J.H. et al. Science 273, 1696–1699 (1996).

    Article  CAS  Google Scholar 

  23. Golden, B.L., Gooding, A.R., Podell, E.R. & Cech, T.R. Science 282, 259–264 (1998).

    Article  CAS  Google Scholar 

  24. Lehnert, V., Jaeger, L., Michel, F. & Westhof, E. Chem. Biol. 3, 993–1009 (1996).

    Article  CAS  Google Scholar 

  25. Cate, J.H. & Doudna, J.A. Structure 4, 1221–1229 (1996).

    Article  CAS  Google Scholar 

  26. Zheng, M., Wu, M. & Tinoco, I. Jr Proc. Natl. Acad. Sci. USA 98, 3695–3700 (2001).

    Article  CAS  Google Scholar 

  27. Christian, E.L. & Yarus, M. Biochemistry 32, 4475–4480 (1993).

    Article  CAS  Google Scholar 

  28. Berens, C., Streicher, B., Schroeder, R. & Hillen, W. Chem. Biol. 5, 163–175 (1998).

    Article  CAS  Google Scholar 

  29. Wu, M. & Tinoco, I. Jr Proc. Natl. Acad. Sci. USA 95, 11555–11560 (1998).

    Article  CAS  Google Scholar 

  30. Silverman, S.K. & Cech, T.R. RNA 7, 161–166 (2001).

    Article  CAS  Google Scholar 

  31. Russell, R. et al. Proc. Natl. Acad. Sci. USA 99, 4266–4271 (2002).

    Article  CAS  Google Scholar 

  32. Pan, J. & Woodson, S.A. J. Mol. Biol. 280, 597–609 (1998).

    Article  CAS  Google Scholar 

  33. Pan, J., Deras, M.L. & Woodson, S.A. J. Mol. Biol. 296, 133–144 (2000).

    Article  CAS  Google Scholar 

  34. Zaug, A.J., Grosshans, C.A. & Cech, T.R. Biochemistry 27, 8924–8931 (1988).

    Article  CAS  Google Scholar 

  35. Lingner, J. & Keller, W. Nucleic Acids Res. 21, 2917–2920 (1993).

    Article  CAS  Google Scholar 

  36. Latham, J.A., Zaug, A.J. & Cech, T.R. Methods Enzymol. 181, 558–569 (1990).

    Article  CAS  Google Scholar 

  37. Tullius, T.D., Dombroski, B.A., Churchill, M.E. & Kam, L. Methods Enzymol. 155, 537–558 (1987).

    Article  CAS  Google Scholar 

  38. Wang, X.D. & Padgett, R.A. Proc. Natl. Acad. Sci. USA 86, 7795–7799 (1989).

    Article  CAS  Google Scholar 

  39. Emerick, V.L. & Woodson, S.A. Proc. Natl. Acad. Sci. USA 91, 9675–9679 (1994).

    Article  CAS  Google Scholar 

  40. Philo, J.S. Biophys. J. 72, 435–444 (1997).

    Article  CAS  Google Scholar 

  41. Hinz, H.-J. Thermodynamic Data for Biochemistry and Biotechnology (Springer-Verlag, New York; 1986).

    Book  Google Scholar 

  42. Glasel, J.A. & Deutscher, M.P. Introduction to Biophysical Methods for Protein and Nucleic Acid Research (Academic Press, San Diego; 1995).

    Google Scholar 

  43. Pastor, N., Weinstein, H., Jamison, E. & Brenowitz, M. J. Mol. Biol. 304, 55–68 (2000).

    Article  CAS  Google Scholar 

  44. Brenowitz, M., Senear, D.F., Shea, M.A. & Ackers, G.K. Methods Enzymol. 130, 132–181 (1986).

    Article  CAS  Google Scholar 

  45. Sclavi, B., Woodson, S., Sullivan, M., Chance, M. & Brenowitz, M. Methods Enzymol. 295, 379–402 (1998).

    Article  CAS  Google Scholar 

  46. Hill, A.V. J. Physiol. (London) 40, iv–vii (1910).

    Google Scholar 

Download references

Acknowledgements

We thank D. Herschlag and R. Russell for pre-publication discussion of their results. This work was supported by grants from the National Institute of General Medical Sciences and the Biomedical Technology Program of the Division of Research Resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Brenowitz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takamoto, K., He, Q., Morris, S. et al. Monovalent cations mediate formation of native tertiary structure of the Tetrahymena thermophila ribozyme. Nat Struct Mol Biol 9, 928–933 (2002). https://doi.org/10.1038/nsb871

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb871

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing