Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Core mutations switch monomeric protein GB1 into an intertwined tetramer

Abstract

The structure of a mutant immunoglobulin-binding B1 domain of streptococcal protein G (GB1), which comprises five conservative changes in hydrophobic core residues, was determined by NMR spectroscopy and X-ray crystallography. The oligomeric state and quaternary structure of the mutant protein are drastically changed from the wild type protein. The mutant structure consists of a symmetric tetramer, with intermolecular strand exchange involving all four units. Four of the five secondary structure elements present in the monomeric wild type GB1 structure are retained in the tetrameric structure, although their intra- and intermolecular interactions are altered. Our results demonstrate that through the acquisition of a moderate number of pivotal point mutations, proteins such as GB1 are able to undergo drastic structural changes, overcoming reduced stability of the monomeric unit by multimerization. The present structure is an illustrative example of how proteins exploit the breadth of conformational space.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and sequence of the B1 domain of streptococcal protein G.
Figure 2: NMR spectra.
Figure 3: Schematic ribbon drawings of four possible topologies for the tetrameric mutant.
Figure 4: Overall structure of the GB1 mutant.
Figure 5: Core residues implicated in the conformational switch.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Gronenborn, A.M. et al. A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein G. Science 253, 657–661 (1991).

    Article  CAS  Google Scholar 

  2. Gallagher, T., Alexander, P., Bryan, P. & Gilliland, G.L. Two crystal structures of the β1 immunoglobulin-binding domain of streptococcal protein G and comparison with NMR. Biochemistry 33, 4721–4729 (1994).

    Article  CAS  Google Scholar 

  3. Tcherkasskaya, O., Knutson, J.R., Bowley, S.A., Frank, M.K. & Gronenborn, A.M. Nanosecond dynamics of the single tryptophan reveals multi-state equilibrium unfolding of protein GB1. Biochemistry 39, 11216–11226 (2000).

    Article  CAS  Google Scholar 

  4. Malakauskas, S.M. & Mayo, S.L. Design, structure and stability of a hyperthermophilic protein variant. Nature Struct. Biol. 5, 470–475 (1998).

    Article  CAS  Google Scholar 

  5. Gronenborn, A.M., Frank, M.K. & Clore, G.M. Core mutants of the immunoglobulin binding domain of streptococcal protein G: stability and structural integrity. FEBS Lett. 398, 312–316 (1996).

    Article  CAS  Google Scholar 

  6. Achari, A. et al. 1.67 Å X-ray structure of the B2 immunoglobulin-binding domain of streptococcal protein G and comparison to the NMR structure of the B1 domain. Biochemistry 31, 10449–10457 (1992).

    Article  CAS  Google Scholar 

  7. Gronenborn, A.M. & Clore, G.M. Rapid screening for structural integrity of expressed proteins by heteronuclear NMR spectroscopy. Protein Sci. 5, 174–177 (1996).

    Article  CAS  Google Scholar 

  8. Clore, G.M & Gronenborn, A.M. Structures of larger proteins in solution: three- and four-dimensional heteronuclear NMR spectroscopy. Science 252, 1390–1399 (1991).

    Article  CAS  Google Scholar 

  9. Bax, A. & Grzesiek, S. Methodological advances in protein NMR. Acc. Chem. Res. 26, 131–138 (1993).

    Article  CAS  Google Scholar 

  10. Clore, G.M. & Gronenborn, A.M. Determining structures of larger proteins and protein complexes by NMR. Trends Biotechnol. 16 22–34 (1998).

    Article  CAS  Google Scholar 

  11. Omichinski, J.G. et al. NMR structure of a specific DNA complex of Zn-containing DNA binding domain of GATA-1. Science 261, 438–446 (1993).

    Article  CAS  Google Scholar 

  12. Annila, A., Aittio, H., Thulin, E. & Drakenberg, T. Recognition of protein folds via dipolar couplings. J. Biol NMR 14, 223–230 (1999).

    Article  CAS  Google Scholar 

  13. Barrientos, L.G. et al. 1H, 13C, 15N resonance assignments and fold verification of a circular permuted variant of the potent HIV-inactivating protein cyanovirin-N. J. Biomol. NMR 19, 289–290 (2001).

    Article  CAS  Google Scholar 

  14. Cornilescu, G., Marquardt, J.L., Ottiger, M. & Bax, A. Validation of protein structure from anisotropic carbonyl chemical shifts in a dilute liquid crystalline phase. J. Am. Chem. Soc. 120, 6836–6837 (1998).

    Article  CAS  Google Scholar 

  15. Nilges, M., Clore, G.M. & Gronenborn, A.M. Determination of three-dimensional structures of proteins from interproton distance data by hybrid distance geometry-dynamical simulated annealing calculations. FEBS Lett. 229, 317–324 (1988).

    Article  CAS  Google Scholar 

  16. Brünger, A.T. et al. Crystallography and NMR system (CNS): a new software system for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  17. Hendrickson, W.A. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254, 51–58 (1991).

    Article  CAS  Google Scholar 

  18. Kuhlman, B., O'Neill, J.W., Kim, D.E., Zhang, K.Y.J. & Baker, D. Conversion of monomeric protein L to an obligate dimer by computational protein design. Proc. Natl. Acad. Sci. USA 98, 10687–10691 (2001).

    Article  CAS  Google Scholar 

  19. Bennett, M.J., Choe, S. & Eisenberg, D. Domain swapping — entangling alliances between proteins. Proc. Natl. Acad. Sci. USA 91, 3127–3131 (1994).

    Article  CAS  Google Scholar 

  20. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  21. Garrett, D.S., Powers, R., Gronenborn, A.M. & Clore, G.M. A common sense approach to peak picking in two-, three- and four-dimensional spectra using automatic computer analysis of contour diagrams. J. Magn. Reson. 94, 214–220 (1991).

    Google Scholar 

  22. Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for protein chemical shift and sequence homology. J. Biomol. NMR 13, 289–302 (1999).

    Article  CAS  Google Scholar 

  23. Warren, J.J. & Moore, P.B. A maximum likelihood method for determining Da and R for sets of dipolar coupling data. J. Magn. Reson. 149, 271–275 (2001).

    Article  CAS  Google Scholar 

  24. Nilges, M. A calculational strategy for the structure determination of symmetric dimers by 1H NMR. Proteins Struct. Funct. Genet. 17, 297–309 (1993).

    Article  CAS  Google Scholar 

  25. O'Donoghue, S.I., King, G.F. & Nilges, M. Calculation of symmetric multimer structures from NMR data using a priori knowledge of the monomer structure, co-monomer restraints, and interface mapping: the case of leucine zippers. J. Biomol. NMR 8, 193–206 (1996).

    Article  CAS  Google Scholar 

  26. Ramachandran, G.N., Ramakrishnan, C. & Sasisekharan, V. Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 7, 95–99 (1963).

    Article  CAS  Google Scholar 

  27. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.W. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  28. Koradi, R., Billeter, M. & Wüthrich, K. A program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55 (1996).

    Article  CAS  Google Scholar 

  29. Carson, M. RIBBONS 2.0. J. Appl. Crystallogr. 24, 958–961 (1991).

    Article  Google Scholar 

  30. Jancarik, J. & Kim, S.-H. Sparse matrix sampling: a screening method for crystallization of proteins. J. Appl. Crystallogr. 24, 409–411 (1991).

    Article  CAS  Google Scholar 

  31. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  32. Sheldrick, G.M. in Direct Methods for Solving Macromolecular Structures (ed. Fortier, S.) 401–411 (Kluwer Academic Publications, Dordrecht; 1998).

    Book  Google Scholar 

  33. Ramakrishnan, V., Finch, J.T., Graziano, V., Lee, P.L. & Sweet, R.M. Crystal structure of globular domain of histone H5 and its implications for nucleosome binding. Nature 362, 219–223 (1993).

    Article  CAS  Google Scholar 

  34. Wang, B.-C. Resolution of phase ambiguity in macromolecular crystallography. Methods Enzymol. 115, 90–112 (1985).

    Article  CAS  Google Scholar 

  35. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  36. Furey, W. & Swaminathan, S. PHASES-95: A program package for processing and analyzing diffraction data from macromolecules. Methods Enzymol. 277, 590–620 (1997).

    Article  CAS  Google Scholar 

  37. Brünger, A.T. X-PLOR: a system for X-ray crystallography and NMR (Yale University Press, New Haven; 1993).

  38. Navaza, J. & Saludjian, P. AMoRe: an automated molecular replacement program package. Methods Enzymol. 276, 581–594 (1997).

    Article  CAS  Google Scholar 

  39. Brünger, A.T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992).

    Article  Google Scholar 

  40. Tronrud, D.E. Knowledge-based B-factor restraints for the refinement of proteins. J. Appl. Crystallogr. 29, 100–104 (1996).

    Article  CAS  Google Scholar 

  41. Brooks, B.R. et al. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comp. Chem. 4, 187–217 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Garrett and F. Delaglio for software and R. Tschudin for technical support; L. Pannell for mass spectrometry; P. Wingfield for analytical ultracentrifugation; I. Nesheiwat and J.M. Louis for expert help with the HS#124 mutants; A.B. Hickman and Z. Dauter for help with crystallization, data collection and SHELXD32; and P. Koehl and J. M. Louis for numerous useful discussions. This work was supported in part by the Intramural AIDS Targeted Antiviral Program of the Office of the Director of the National Institutes of Health to A.M.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela M. Gronenborn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirsten Frank, M., Dyda, F., Dobrodumov, A. et al. Core mutations switch monomeric protein GB1 into an intertwined tetramer. Nat Struct Mol Biol 9, 877–885 (2002). https://doi.org/10.1038/nsb854

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb854

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing