Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the N-terminal 283-residue fragment of the immature HIV-1 Gag polyprotein

Abstract

The capsid protein (CA) of the mature human immunodeficiency virus (HIV) contains an N-terminal β-hairpin that is essential for formation of the capsid core particle. CA is generated by proteolytic cleavage of the Gag precursor polyprotein during viral maturation. We have determined the NMR structure of a 283-residue N-terminal fragment of immature HIV-1 Gag (Gag283), which includes the intact matrix (MA) and N-terminal capsid (CAN) domains. The β-hairpin is unfolded in Gag283, consistent with the proposal that hairpin formation occurs subsequent to proteolytic cleavage of Gag, triggering capsid assembly. Comparison of the immature and mature CAN structures reveals that β-hairpin formation induces a 2 Å displacement of helix 6 and a concomitant displacement of the cyclophylin-A (CypA)-binding loop, suggesting a possible allosteric mechanism for CypA-mediated destabilization of the capsid particle during infectivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representative NMR spectra obtained for Gag283 and comparisons with the mature CAN domain.
Figure 2: NMR relaxation and chemical shift data that identify regions of structure and mobility.
Figure 3: Stereo views of the MA (residues Gly 2–Tyr 132, top) and CAN (residues Pro 133–Leu 283) domains of the ensemble of 20 final structures of Gag283.
Figure 4: Hydrodynamic properties of Gag283.
Figure 5: Structural changes associated with β-hairpin formation.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Coffin, J.M., Hughes, S.H. & Varmus, H.E. Retroviruses (Cold Spring Harbor Laboratory Press, Plainview, New York; 1997).

    Google Scholar 

  2. Vogt, V.M. & Simon, M.N. Mass determination of Rous sarcoma virus virions by scaning transmission electron microscopy. J. Virol. 73, 7050–7055 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Turner, B.G. & Summers, M.F. Structural biology of HIV. J. Mol. Biol. 285, 1–32 (1999).

    Article  CAS  Google Scholar 

  4. Gitti, R.K. et al. Structure of the amino-terminal core domain of the HIV-1 capsid protein. Science 273, 231–235 (1996).

    Article  CAS  Google Scholar 

  5. Gamble, T.R. et al. Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell 87, 1285–1294 (1996).

    Article  CAS  Google Scholar 

  6. Momany, C. et al. Crystal structure of dimeric HIV-1 capsid protein. Nature Struct. Biol. 9, 763–770 (1996).

    Article  Google Scholar 

  7. Gamble, T.R. et al. Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein. Science 278, 849–853 (1997).

    Article  CAS  Google Scholar 

  8. Worthylake, D.K., Wang, H., Yoo, S., Sundquist, W.I. & Hill, C.P. Structures of the HIV-1 capsid protein dimerization domain at 2.6 Å resolution. Acta Crystallogr. D 55, 85–92 (1999).

    Article  CAS  Google Scholar 

  9. Berthet-Colominas, C. et al. Head-to-tail dimers and interdomain flexibility revealed by the crystal structure of HIV-1 capsid protein (p24) complexed with a monoclonal antibody Fab. EMBO J. 18, 1124–1136 (1999).

    Article  CAS  Google Scholar 

  10. Kingston, R.L. et al. Structure and self-association of the Rous sarcoma virus capsid protein. Structure 8, 617–628 (2000).

    Article  CAS  Google Scholar 

  11. Cornilescu, C.C., Bouamr, F., Yao, X., Carter, C. & Tjandra, N. Structural analysis of the N-terminal domain of the human T-cell leukemia virus capsid protein. J. Mol. Biol. 306, 783–797 (2001).

    Article  CAS  Google Scholar 

  12. von Schwedler, U.K. et al. Proteolytic refolding of the HIV-1 capsid protein amino-terminus facilitates viral core assembly. EMBO J. 17, 1555–1568 (1998).

    Article  CAS  Google Scholar 

  13. Gross, I., Hohenberg, H., Juckhagel, C. & Krausslich, H.-G. N-terminal extension of human immunodeficiency virus capsid protein converts the in vitro assembly phenotype from tubular to spherical particles. J. Virol. 72, 4798–4810 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Braaten, D., Franke, E.K. & Luban, J. Cyclophilin A is required for an early step in the life cycle of human immunodeficiency virus type-1 before the initiation of reverse transcription. J. Virol. 70, 3551–3560 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Franke, E.K., Yuan, H.E. & Luban, J. Specific incorporation of cyclophilin A into HIV-1 virions. Nature 24, 359–362 (1994).

    Article  Google Scholar 

  16. Luban, J., Franke, E.K. & Yuan, H.E. HIV-1 uses host-cell proteins to form fully infectious virions. Nature 7, 37–42 (1994).

    Google Scholar 

  17. Luban, J., Bossolt, K.L., Franke, E.K., Kalpana, G.V. & Goff, S.P. Human immunodeficiency virus type 1 gag protein binds to cyclophilins A and B. Cell 73, 1067–1078 (1993).

    Article  CAS  Google Scholar 

  18. Thali, M. et al. Functional association of cyclophilin A with HIV-1 virions. Nature 372, 363–365 (1994).

    Article  CAS  Google Scholar 

  19. Ackerson, B., Rey, O., Canon, J. & Krogstad, P. Cells with high cyclophilin A content support replication of Human Immunodeficiency Virus Type-1 Gag mutants with decreased ability to incorporate Cyclophilin A. J. Virol. 72, 303–308 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Rothman, J.E. & Schmid, S.L. Enzymatic recycling of clathrin from coated vesicles. Cell 46, 5–9 (1986).

    Article  CAS  Google Scholar 

  21. Adachi, A. et al. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J. Virol. 59, 284–291 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Massiah, M.A. et al. Three-dimensional structure of the human immunodeficiency virus type 1 matrix protein. J. Mol. Biol. 244, 198–223 (1994).

    Article  CAS  Google Scholar 

  23. Hill, C.P., Worthylake, D., Bancroft, D.P., Christensen, A.M. & Sundquist, W.I. Crystal structures of the trimeric HIV-1 matrix protein: implications for membrane association. Proc. Natl. Acad. Sci. USA 93, 3099–3104 (1996).

    Article  CAS  Google Scholar 

  24. Massiah, M.A. et al. Comparison of the NMR and X-ray structures of the HIV-1 matrix protein: evidence for conformational changes during viral assembly. Protein Sci. 5, 2391–2398 (1996).

    Article  CAS  Google Scholar 

  25. Nermut, M.V., Frank, H. & Schafer, W. Properties of mouse leukemia viruses. III. Electron microscopic appearance as revealed after conventional preparation techniques as well as freezing-drying and freezing-etching. Virology 49, 345–358 (1972).

    Article  CAS  Google Scholar 

  26. Bolognesi, D.P., Luftig, R. & Shaper, J.H. Localization of RNA tumor virus polypeptides I. Isolation of futher virus substructures. Virology 56, 549–564 (1973).

    Article  CAS  Google Scholar 

  27. Fuller, S.D., Wilk, T., Gowen, B.E., Krausslich, H.-G. & Vogt, V.M. Cryo-electron microscopy reveals ordered domains in the immature HIV-1 particle. Curr. Biol. 7, 729–738 (1997).

    Article  CAS  Google Scholar 

  28. Wilk, T. et al. Organization of immature Human Immunodeficiency Virus Type 1. J. Virol. 75, 759–771 (2001).

    Article  CAS  Google Scholar 

  29. Nermut, M.V. et al. Further evidence for hexagonal organization of HIV gag protein in prebudding assemblies and immature virus-like particles. J. Struct. Biol. 123, 143–149 (1998).

    Article  CAS  Google Scholar 

  30. Fitzon, T. et al. Proline residues in the HIV-1 NH2-terminal capsid domain: structure determinants for proper core assembly and subsequent steps of early replication. Virology 268, 294–307 (2000).

    Article  CAS  Google Scholar 

  31. Tang, S. et al. Human immunodeficiency virus type-1 N-terminal capsid mutants that show aberrant core morphology and are blocked in initiation of reverse transcription in infected cells. J. Virol. 75, 9357–9366 (2001).

    Article  CAS  Google Scholar 

  32. Kong, L.B. et al. Cryoelectron microscopy examination of human immunodeficiency virus type-1 virions with mutations in the cyclophilin A binding loop. J. Virol. 72, 4403–4407 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Yin, L., Braaten, D. & Luban, J. Human Immunodeficiency Virus Type-1 replication is modulated by host cyclophilin A expression levels. J. Virol. 72, 6430–6436 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Campos-Olivas, R. & Summers, M.F. Backbone dynamics of the N-terminal domain of the HIV-1 capsid protein and comparison with the G94D mutant conferring cyclosporin resistance/dependence. Biochemistry 38, 10262–10271 (1999).

    Article  CAS  Google Scholar 

  35. Bosco, D.A., Eisenmesser, E.Z., Pochapsky, S., Sundquist, W.I. & Kern, D. Catalysis of cis/trans isomerization in native HIV-1 capsid by human cyclophilin A. Proc. Natl. Acad. Sci. USA 99, 5247–5252 (2002).

    Article  CAS  Google Scholar 

  36. Bistrow, R. et al. Human cyclophilin has a significantly higher affinity for HIV-1 recombinant p55 than p24. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 20, 334–336 (1999).

    Article  Google Scholar 

  37. Yoo, S. et al. Molecular recognition in the HIV-1 capsid/cyclophilin A complex. J. Mol. Biol. 269, 780–795 (1997).

    Article  CAS  Google Scholar 

  38. Rossmann, M.G. Viral cell recognition and entry. Protein Sci. 3, 1712–1725 (1994).

    Article  CAS  Google Scholar 

  39. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor; 1989).

    Google Scholar 

  40. Grzesiek, S. & Bax, A. The importance of not saturating H2O in protein NMR. Application to sensitivity enhancement and NOE measurement. J. Am. Chem. Soc. 115, 12593–12593 (1993).

    Article  CAS  Google Scholar 

  41. Grzesiek, S. & Bax, A. Improved 3D triple-resonance NMR techniques applied to a 31 kDa protein. J. Magn. Res. 96, 432–440 (1992).

    CAS  Google Scholar 

  42. Delaglio, F. et al. NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  43. Johnson, B.A. & Blevins, R.A. NMRView: a computer program for the visualization and analysis for NMR data. J. Biomol. NMR 4, 603–614 (1994).

    Article  CAS  Google Scholar 

  44. Wüthrich, K. NMR of Proteins and Nucleic Acids (John Wiley & Sons, New York; 1986).

    Book  Google Scholar 

  45. Clore, G.M. & Gronenborn, A.M. Structures of larger proteins in solution: three- and four-dimensional heteronuclear NMR spectroscopy. Science 252, 1390–1399 (1991).

    Article  CAS  Google Scholar 

  46. Bax, A. & Grzesiek, S. Methodological advances in protein NMR. Acc. Chem. Res. 26, 131–138 (1993).

    Article  CAS  Google Scholar 

  47. Wishart, D.S., Sykes, B.D. & Richards, F.M. The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 31, 1647–1651 (1992).

    Article  CAS  Google Scholar 

  48. Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR. 13, 289–302 (1999).

    Article  CAS  Google Scholar 

  49. Güntert, P., Mumenthaler, C. & Wüthrich, K. Torsion angle dynamics for protein structure calculations with a new program, DYANA. J. Mol. Biol. 273, 283–298 (1997).

    Article  Google Scholar 

  50. Laskowski, R.A., Rullmann, J.A.C., MacArthur, M.W., Kaptein, R. & Thornton, J.M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).

    Article  CAS  Google Scholar 

  51. Ferrin, T.E., Huang, C.C., Jarvis, L.E. & Langridge, R. The MIDAS display system. J. Mol. Graph. 6, 13–27 (1988).

    Article  CAS  Google Scholar 

  52. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst. 24, 946–950 (1991).

    Article  Google Scholar 

  53. Merritt, E.A. & Bacon, D.J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

  54. Kay, L.E., Torchia, D.A. & Bax, A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 28, 8972–8979 (1989).

    Article  CAS  Google Scholar 

  55. Tjandra, N., Kuboniwa, H., Ren, H. & Bax, A. Rotational dynamics of calcium-free calmodulin studied by 15N-NMR relaxation measurements. Eur. J. Biochem. 230, 1014–1024 (1995).

    Article  CAS  Google Scholar 

  56. Lee, L.K., Rance, M., Chazin, W.J. & Palmer, AG. I. Rotational diffusion anisotropy of proteins from simultaneous analysis of 15N and 13Cα nuclear spin relaxation. J. Biomol. NMR 9, 287–298 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support from the NIAID-NIH is gratefully acknowledged. We thank D. King (U.C. Berkeley) for mass spectral measurements and R. Edwards (HHMI, UMBC) for technical assistance. Y.N. is a Meyerhoff undergraduate scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael F. Summers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, C., Ndassa, Y. & Summers, M. Structure of the N-terminal 283-residue fragment of the immature HIV-1 Gag polyprotein. Nat Struct Mol Biol 9, 537–543 (2002). https://doi.org/10.1038/nsb806

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb806

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing