Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Designing a 20-residue protein

Abstract

Truncation and mutation of a poorly folded 39-residue peptide has produced 20-residue constructs that are >95% folded in water at physiological pH. These constructs optimize a novel fold, designated as the 'Trp-cage' motif, and are significantly more stable than any other miniprotein reported to date. Folding is cooperative and hydrophobically driven by the encapsulation of a Trp side chain in a sheath of Pro rings. As the smallest protein-like construct, Trp-cage miniproteins should provide a testing ground for both experimental studies and computational simulations of protein folding and unfolding pathways. Pro–Trp interactions may be a particularly effective strategy for the a priori design of self-folding peptides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Truncation and optimization of the C-terminal fold of EX4.
Figure 2: Folding measures for Trp-cage construct 5b.
Figure 3: NMR spectra and the structure derived for TC5b.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Dahiyat, B.I. & Mayo, S.L. Science 278, 82–87 (1997).

    Article  CAS  Google Scholar 

  2. Hill, R.B. & DeGrado, W.F. J. Am. Chem. Soc. 120, 1138–1145 (1998).

    Article  CAS  Google Scholar 

  3. Walsh, S.T.R., Cheng, H., Bryson, J.W., Roder, H. & DeGrado, W.F. Proc. Natl. Acad. Sci. USA 96, 5486–5491 (1999).

    Article  CAS  Google Scholar 

  4. Ottesen, J.J. & Imperiali, B. Nature Struct. Biol. 8, 535–539 (2001).

    Article  CAS  Google Scholar 

  5. Cochran, A.G., Skelton, N.J. & Starovasnik, M.A. Proc. Natl. Acad. Sci. USA 98, 5578–5583 (2001).

    Article  CAS  Google Scholar 

  6. Li, X., Sutcliffe, M.J., Schwartz, T.W. & Dobson, C.M. Biochemistry 31, 1245–1253 (1992).

    Article  CAS  Google Scholar 

  7. Sudol, M. Prog. Biophys. Mol. Biol. 65, 113–132 (1996).

    Article  CAS  Google Scholar 

  8. McKnight, C.J., Doering, D.S., Matsudaira, P.T. & Kim, P.S. J. Mol. Biol. 260, 126–134 (1996).

    Article  CAS  Google Scholar 

  9. Jager, M., Nguyen, H., Crane, J.C., Kelly, J.W. & Gruebele, M. J. Mol. Biol. 311, 373–393 (2001).

    Article  CAS  Google Scholar 

  10. Kortemme, T., Ramírez-Alvarado, M. & Serrano, L. Science 281, 253–256 (1998).

    Article  CAS  Google Scholar 

  11. López de la Paz, M., Lacroix, E., Ramírez-Alvarado, M. & Serrano, L. J. Mol. Biol. 312, 229–246 (2001).

    Article  Google Scholar 

  12. Schenck, H. & Gellman, S. J. Am. Chem. Soc. 120, 4869–4870 (1998).

    Article  CAS  Google Scholar 

  13. Maynard, A.J., Sharman, G.J. & Searle, M.S. J. Am. Chem. Soc. 120, 1996–2007 (1998).

    Article  CAS  Google Scholar 

  14. Andersen, N.H. et al. J. Am. Chem. Soc. 121, 9879–9880 (1999).

    Article  CAS  Google Scholar 

  15. Neidigh, J.W., Fesinmeyer, R.M., Prickett, K.S. & Andersen, N.H. Biochemistry 40, 13188–13200 (2001).

    Article  CAS  Google Scholar 

  16. Andersen, N.H. & Tong, H. Protein Sci. 6, 1920–1936 (1997).

    Article  CAS  Google Scholar 

  17. Huyghues-Despointes, B.M., Klinger, T.M. & Baldwin, R.L. Biochemistry 34, 13267–13271 (1995).

    Article  CAS  Google Scholar 

  18. Muñoz, V. & Serrano, L. Biopolymers 41, 495–509 (1997).

    Article  Google Scholar 

  19. Andersen, N.H. et al. J. Am. Chem. Soc. 119, 8547–8561 (1997).

    Article  CAS  Google Scholar 

  20. Koradi, R., Billeter, M. & Wüthrich, K. J. Mol. Graph. 14, 51–55 (1996).

    Article  CAS  Google Scholar 

  21. Loladze, V.V., Ibarra-Molero, B., Sanxhez-Ruiz, J.M. & Makhatadze, G.I. Biochemistry 38, 16419–16423 (1999).

    Article  CAS  Google Scholar 

  22. Andersen, N.H., Cort, J.R., Liu, Z., Sjoberg, S.J. & Tong, H. J. Am. Chem. Soc. 118, 10309–10310 (1996).

    Article  CAS  Google Scholar 

  23. Walgers, R., Lee, T.C. & Cammers-Goodwin, A. J. Am. Chem. Soc. 120, 5073–5079 (1998).

    Article  CAS  Google Scholar 

  24. Blanco, F.J. & Serrano, L. Eur. J. Biochem. 230, 634–649 (1995).

    Article  CAS  Google Scholar 

  25. Ramírez-Alvarado, M., Blanco, F.J. & Serrano, L. Protein Sci. 10, 1381–1392 (2001).

    Article  Google Scholar 

  26. Andersen, N.H., Liu, Z. & Prickett, K.S. FEBS Lett. 399, 47–52 (1996).

    Article  CAS  Google Scholar 

  27. Piotto, M., Saudek, V. & Sklenar, V. J. Biomol. NMR 2, 661–665 (1992).

    Article  CAS  Google Scholar 

  28. Wüthrich, K. NMR of Proteins and Nucleic Acids (John Wiley, New York; 1986).

    Book  Google Scholar 

  29. Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

Initial support came from a feasibility grant from the University of Washington Royalty Research Fund with continuing support from an NIH grant. We thank L. Serrano (EMBL-Heidelberg) for reminding us of the pH dependence of the helix-favoring QXXXD interaction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels H. Andersen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neidigh, J., Fesinmeyer, R. & Andersen, N. Designing a 20-residue protein. Nat Struct Mol Biol 9, 425–430 (2002). https://doi.org/10.1038/nsb798

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb798

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing