Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Conserved mode of peptidomimetic inhibition and substrate recognition of human cytomegalovirus protease

Abstract

Human cytomegalovirus (HCMV) protease belongs to a new class of serine proteases, with a unique polypeptide backbone fold. The crystal structure of the protease in complex with a peptidomimetic inhibitor (based on the natural substrates and covering the P4 to P1' positions) has been determined at 2.7 Å resolution. The inhibitor is bound in an extended conformation, forming an anti-parallel ß-sheet with the protease. The P3 and P1 side chains are less accessible to solvent, whereas the P4 and P2 side chains are more exposed. The inhibitor binding mode shows significant similarity to those observed for peptidomimetic inhibitors or substrates of other classes of serine proteases (chymotrypsin and subtilisin). HCMV protease therefore represents example of convergent evolution. In addition, large conformational differences relative to the structure of the free enzyme are observed, which may be important for inhibitor binding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical structure of the peptidomimetic inhibitor BILC 821 of HCMV protease.
Figure 2: Schematic drawing30 of the structure of HCMV protease in complex with the inhibitor BILC 821.
Figure 3: Superposition of the Cα trace of HCMV protease in complex with BILC 821 (cyan) and the free enzyme (yellow)3.
Figure 4: Schematic drawing showing the interactions between the main chain atoms of the BILC 821 inhibitor and HCMV protease.
Figure 5: Comparison of the molecular surface31 near the active site of HCMV protease a, in complex with the inhibitor BILC 821, and b, in the free enzyme structure3.
Figure 6: Conserved mode of binding of peptide inhibitors (substrates) to HCMV protease (in cyan for carbon atoms), chymotrypsin (yellow), and subtilisin (green).

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Fields, B.N., Knipe, D.M. & Howley, P. M. Fields Virology, (Lippincott-Raven Press, New York; 1996).

    Google Scholar 

  2. Gibson, W., Welch, A.R. & Hall, M.R.T. Assemblin, a herpes virus serine maturational proteinase and new molecular target for antivirals. Persp. Drug Discovery 2, 413–426 (1995).

    Article  CAS  Google Scholar 

  3. Tong, L. et al. A new serine-protease fold revealed by the crystal structure of human cytomegalovirus protease. Nature 383, 272–275 (1996).

    Article  CAS  Google Scholar 

  4. Qiu, X. et al. Unique fold and active site in cytomegalovirus protease. Nature 383, 275–279 (1996).

    Article  CAS  Google Scholar 

  5. Shieh, H.-S. et al. Three-dimensional structure of human cytomegalovirus protease. Nature 383, 279–282 (1996).

    Article  CAS  Google Scholar 

  6. Chen, P. et al. Structure of the human cytomegalovirus protease catalytic domain reveals a novel serine protease fold and catalytic triad. Cell 86, 835–843 (1996).

    Article  CAS  Google Scholar 

  7. Qiu, X. et al. Crystal structure of varicellar-zoster virus protease. Proc. Natl. Acad. Sci. USA 94, 2874–2879 (1997).

    Article  CAS  Google Scholar 

  8. Schechter, I. & Berger, A. On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Comm. 27, 157–162 (1967).

    Article  CAS  Google Scholar 

  9. Ogilvie, W. et al. Peptidomimetic inhibitors of the human cytomegalovirus protease. J. Med. Chem. 40, 4113–4135 (1997).

    Article  CAS  Google Scholar 

  10. Brunger, A.T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992).

    Article  CAS  Google Scholar 

  11. Tong, L. et al. Experiences from the structure determination of human cytomegalovirus protease. Acta Crystallogr. D53, 682–690 (1997).

    CAS  Google Scholar 

  12. Bonneau, P.R. et al. Evidence of a conformational change in the human cytomegalovirus protease upon binding of peptidyl-activated carbonyl inhibitors. Biochemistry 36, 12644–12652 (1997).

    Article  CAS  Google Scholar 

  13. LaPlante, S.R. et al. The bound conformation of a peptidyl methyl ketone inhibitor of the human cytomegalovirus protease. Angew. Chem. in the press (1998).

  14. LaPlante, S.R. et al. Human cytomegalovirus protease complexes its substrate recognition sequences in an extended peptide conformation. Biochemistry 37, 9793–9801 (1998).

    Article  CAS  Google Scholar 

  15. Fujinaga, M. et al. Crystal and molecular structures of the complex of α-chymotrypsin with its inhibitor turkey ovomucoid third domain at 1.8Å resolution. J. Mol. Biol. 195, 397–418 (1987).

    Article  CAS  Google Scholar 

  16. Bode, W., Papamokos, E. & Musil, D. The high-resolution X-ray crystal structure of the complex formed between subtilisin Carlsberg and eglin c, an elastase inhibitor from the leechHirudo medicinalis. Eur. J. Biochem. 166, 673–692 (1987).

    Article  CAS  Google Scholar 

  17. Liljas, A. & Rossmann, M.G. X-ray studies of protein interactions. Ann. Rev. Biochem. 43, 475–507 (1974).

    Article  CAS  Google Scholar 

  18. Hall, D.L. & Darke, P.L. Activation of the herpes simplex virus type 1 protease. J. Biol. Chem. 270, 22697–22700 (1995).

    Article  CAS  Google Scholar 

  19. Pinko, C. et al. Single-chain recombinant human cytomegalovirus protease. J. Biol. Chem. 270, 23634–23640 (1995).

    Article  CAS  Google Scholar 

  20. Darke, P.L. et al. Active human cytomegalovirus protease is a dimer. J. Biol. Chem. 271, 7445–7449 (1996).

    Article  CAS  Google Scholar 

  21. Margosiak, S.A., Vanderpool, D.L., Sisson, W., Pinko, C. & Kan, C.-C. Dimerization of the human cytomegalovirus protease: Kinetic and biochemical characterization of the catalytic homodimer. Biochemistry 35, 5300–5307 (1996).

    Article  CAS  Google Scholar 

  22. Babe, L.M. & Craik, C.S. Viral proteases: Evolution of diverse structural motifs to optimize function. Cell 91, 427–430 (1997).

    Article  CAS  Google Scholar 

  23. Rawlings, N.D. & Barrett, A.J. Families of serine peptidases. Meth. Enz. 244, 19–61 (1994).

    Article  CAS  Google Scholar 

  24. Otwinowski, Z. in Data collection and processing (eds Sawyer, L., Isaacs, N. & Bailey, S.) 56–62 (SERC Daresbury Laboratory, England; 1993).

    Google Scholar 

  25. Tong, L. Replace: A suite of computer programs for molecular-replacement calculations. J. Appl. Crystallogr. 26, 748–751 (1993).

    Article  Google Scholar 

  26. Brunger, A.T. The X-PLOR manual, (Yale University, New Haven, Connecticut, 1992).

    Google Scholar 

  27. Wang, B.-C. Resolution of phase ambiguity in macromolecular crystallography. Meth. Enz. 115, 90–112 (1985).

    Article  CAS  Google Scholar 

  28. Tong, L., Choi, H.-K., Minor, W. & Rossmann, M.G. The structure determination of Sindbis virus core protein using isomorphous replacement and molecular replacement averaging between two crystal forms. Acta Crystallogr. A48, 430–442 (1992).

    Article  Google Scholar 

  29. Jones, T.A. A graphics model building and refinement system for macromolecules. J. Appl. Crystallogr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

  30. Carson, M. Ribbon models of macromolecules. J. Mol. Graphics 5, 103–106 (1987).

    Article  CAS  Google Scholar 

  31. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Davidson for characterization of the protein samples by mass spectrometry, C. Chabot for the synthesis of BILC 821, and D. Cameron for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Tong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, L., Qian, C., Massariol, MJ. et al. Conserved mode of peptidomimetic inhibition and substrate recognition of human cytomegalovirus protease. Nat Struct Mol Biol 5, 819–826 (1998). https://doi.org/10.1038/1860

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/1860

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing