Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Visualizing induced fit in early assembly of the human signal recognition particle

Abstract

Assembly of almost all ribonucleoprotein complexes involves induced fit in the RNA and, thus, formation of one or more intermediate states. In assembly of the human signal recognition particle (SRP), we show that SRP19 binding to SRP RNA involves obligatory intermediates. An apparent discrepancy exists between the ratio of dissociation and association rate constants, determined in a partitioning experiment, and the equilibrium binding constant; this kinetic signature reflects formation of a stable intermediate in assembly of the ribonucleoprotein complex. Assembly intermediates were observed directly by time-resolved footprinting. SRP19 binds rapidly to SRP RNA to form an initial labile, but structurally specific, encounter complex involving both helices III and IV. Two subsequent steps of structural consolidation yield the native RNA–protein interface. SRP19 binding stabilizes helix IV in the region recognized by SRP54, consistent with protein–protein cooperativity mediated in part by mutual recognition of similar RNA structures. This mechanism illustrates principles general to ribonucleoprotein assembly reactions that rely on recruitment of architectural RNA binding proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Secondary structures of SRP RNA and the large subunit (LS) RNA.
Figure 2: Assembly, disassembly and equilibrium binding of the SRP19–RNA complex.
Figure 3: Visualization of SRP19–RNA complex formation by DMS and hydroxyl radical footprinting.
Figure 4: Time-resolved assembly of the SRP19–RNA complex.
Figure 5: Induced fit and cooperativity in early assembly of the human SRP.

Similar content being viewed by others

References

  1. Draper, D.E. Annu. Rev. Biochem. 64, 593–620 (1995).

    Article  CAS  Google Scholar 

  2. Weeks, K.M. Curr. Opin. Struct. Biol. 7, 336–342 (1997).

    Article  CAS  Google Scholar 

  3. Williamson, J.R. Nature Struct. Biol. 7, 834–837 (2000).

    Article  CAS  Google Scholar 

  4. Walter, P. & Blobel, G. Cell 34, 525–533 (1983).

    Article  CAS  Google Scholar 

  5. Gundelfinger, E.D., Krause, E., Melli, M. & Dobberstein, B. Nucleic Acids Res. 11, 7363–7374 (1983).

    Article  CAS  Google Scholar 

  6. Lutcke, H. et al. J. Cell Biol. 121, 977–985 (1993).

    Article  CAS  Google Scholar 

  7. Weichenrieder, O., Wild, K., Strub, K. & Cusack, S. Nature 408, 167–173 (2000).

    Article  CAS  Google Scholar 

  8. Walter, P. & Blobel, G. Proc. Natl. Acad. Sci. USA 77, 7112–7116 (1980).

    Article  CAS  Google Scholar 

  9. Lutcke, H. Eur. J. Biochem. 228, 531–550 (1995).

    Article  CAS  Google Scholar 

  10. Zwieb, C. Nucleic Acids Res. 19, 2955–2960 (1991).

    Article  CAS  Google Scholar 

  11. Henry, K.A., Zwieb, C. & Fried, H.M. Protein Exp. Pur. 9, 15026–15033 (1997).

    Google Scholar 

  12. Siegel, V. & Walter, P. Proc. Natl. Acad. Sci. USA 85, 1801–1805 (1988).

    Article  CAS  Google Scholar 

  13. Diener, J.L. & Wilson, C. Biochemistry 39, 12862–12874 (2000).

    Article  CAS  Google Scholar 

  14. Romisch, K. et al. Nature 340, 478–482 (1989).

    Article  CAS  Google Scholar 

  15. Gowda, K., Chittenden, K. & Zwieb, C. Nucleic Acids Res. 25, 388–394 (1997).

    Article  CAS  Google Scholar 

  16. Bhuiyan, S.H., Gowda, K., Hotokezaka, H. & Zwieb, C. Nucleic Acids Res. 28, 1365–1373 (2000).

    Article  CAS  Google Scholar 

  17. Fersht, A. Enzyme Structure and Mechanism (Freeman and Co., New York; 1985).

    Google Scholar 

  18. Zwieb, C. J. Biol. Chem. 267, 15650–15656 (1992).

    CAS  PubMed  Google Scholar 

  19. Ehresmann, C. et al. Nucleic Acids Res. 15, 9109–9128 (1987).

    Article  CAS  Google Scholar 

  20. Latham, J.A. & Cech, T.R. Science 245, 276–282 (1989).

    Article  CAS  Google Scholar 

  21. Poritz, M.A. et al. Science 250, 1111–1117 (1990).

    Article  CAS  Google Scholar 

  22. Larsen, N. & Zwieb, C. Nucleic Acids Res. 19, 209–215 (1991).

    Article  CAS  Google Scholar 

  23. Batey, R.T., Rambo, R.P., Lucast, L., Rha, B. & Doudna, J.A. Science 287, 1232–1239 (2000).

    Article  CAS  Google Scholar 

  24. Gish, G. & Eckstein, F. Science 240, 1520–1522 (1988).

    Article  CAS  Google Scholar 

  25. Schatz, D., Leberman, R. & Eckstein, F. Proc. Natl. Acad. Sci. USA 88, 6132–6136 (1991).

    Article  CAS  Google Scholar 

  26. Zwieb, C. & Samuelsson, T. Nucl. Acids Res. 28, 171–172 (2000).

    Article  CAS  Google Scholar 

  27. Lentzen, G., Moine, H., Ehresmann, C., Ehresmann, B. & Wintermeyer, W. RNA 2, 244–253 (1996).

    CAS  PubMed  Google Scholar 

  28. Saldanha, R.J., Patel, S.S., Surendran, R., Lee, J.C. & Lambowitz, A.M. Biochemistry 34, 1275–1287 (1995).

    Article  CAS  Google Scholar 

  29. Ho, Y. & Waring, R.B. J. Mol. Biol. 292, 987–1001 (1999).

    Article  CAS  Google Scholar 

  30. Webb, A.E., Rose, M.A., Westhof, E. & Weeks, K.M. J. Mol. Biol. in the press (2001).

  31. Gowda, K. & Zwieb, C. Nucleic Acids Res. 25, 2835–2840 (1997).

    Article  CAS  Google Scholar 

  32. Weeks, K.M. & Cech, T.R. Biochemistry 34, 7728–7738 (1995).

    Article  CAS  Google Scholar 

  33. Niranjanakumari, S., Stams, T., Crary, S.M., Christianson, D.W. & Fierke, C.A. Proc. Natl. Acad. Sci. USA 95, 15212–15217 (1998).

    Article  CAS  Google Scholar 

  34. Chamberlin, S.I. & Weeks, K.M. J. Am. Chem. Soc. 122, 216–224 (2000).

    Article  CAS  Google Scholar 

  35. Pan, T. Biochemistry 34, 902–909 (1995).

    Article  CAS  Google Scholar 

  36. Buchmueller, K.L., Webb, A.E., Richardson, D.A. & Weeks, K.M. Nature Struct. Biol. 7, 362–366 (2000).

    Article  CAS  Google Scholar 

  37. Wild, K., Weichenrieder, O., Leonard, G.A. & Cusack, S. Structure Fold. Des. 7, 1345–1352 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Searle Scholars Program of the Chicago Community Trust and by the NIH to K.M.W. We are indebted to K. Henry and H. Fried for gifts of plasmids and many helpful interactions in early phases of this work. We thank P. Bevilacqua and E. Westhof for helpful discussions; M. Been and T. Hall for careful readings of the manuscript; and L. Pedersen and L. Perera for assistance with RNA modeling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin M. Weeks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rose, M., Weeks, K. Visualizing induced fit in early assembly of the human signal recognition particle. Nat Struct Mol Biol 8, 515–520 (2001). https://doi.org/10.1038/88577

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/88577

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing