Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the α-amylase family

Abstract

Cyclodextrin glycosyltransferase (CGTase) is an enzyme of the α-amylase family, which uses a double displacement mechanism to process α-linked glucose polymers. We have determined two X-ray structures of CGTase complexes, one with an intact substrate at 2.1 Å resolution, and the other with a covalently bound reaction intermediate at 1.8 Å resolution. These structures give evidence for substrate distortion and the covalent character of the intermediate and for the first time show, in atomic detail, how catalysis in the α-amylase family proceeds by the concerted action of all active site residues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme of the CGTase reaction mechanism.
Figure 2: Stereoview of the substrate bound to CGTase.
Figure 3: Stereoview of the covalent intermediate electron density from a 2Fo - Fc omit37 map (1σ contoured), the arrow indicates the glycosyl–enzyme covalent bond.
Figure 4: Structures of the stable states along the reaction coordinate.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Blake, C.C.F. et al Nature 206, 757–761 (1965).

    Article  CAS  Google Scholar 

  2. White, A. & Rose, D.R. Curr. Opin. Struct. Biol. 7, 645–651 (1997).

    Article  CAS  Google Scholar 

  3. Sinnott, M.L. Chem. Reviews 90, 1171–1202 (1990).

    Article  CAS  Google Scholar 

  4. McCarter, J.D. & Withers, S.G. Curr. Opin. Struct. Biol. 4, 885–892 (1994).

    Article  CAS  Google Scholar 

  5. Henrissat, B. & Davies, G. Curr. Opin. Struct. Biol. 7, 637–644 (1997).

    Article  CAS  Google Scholar 

  6. Stryer, L. Biochemistry (W.H. Freeman, New York; 1988).

    Google Scholar 

  7. Davies, G. et al. Biochemistry 37, 11707– 11713 (1998).

    Article  CAS  Google Scholar 

  8. Svensson, B. Plant. Mol. Biol. 25, 141–157 (1994).

    Article  CAS  Google Scholar 

  9. Janecek, S. Prog. Biophys. Molec. Biol. 67, 67– 97 (1997).

    Article  CAS  Google Scholar 

  10. Koshland, D.E. Biol. Rev. Camb. Philos. Soc. 28, 416– 436 (1953).

    Article  CAS  Google Scholar 

  11. Mosi, R., He, S., Uitdehaag, J., Dijkstra, B.W. & Withers, S.G. Biochemistry 36, 9927– 9934 (1997).

    Article  CAS  Google Scholar 

  12. Tanaka, Y., Wen, T., Blanchard, J.S. & Hehre, E.J. J. Biol. Chem. 269, 32306–32312 ( 1994).

    CAS  PubMed  Google Scholar 

  13. Strokopytov, B. et al Biochemistry 34, 2234– 2240 (1995).

    Article  CAS  Google Scholar 

  14. Mosi, R. et al. Biochemistry 37, 17192– 17198 (1998).

    Article  CAS  Google Scholar 

  15. Dowd, M.K., French, A.D. & Reilly, P.J. Carbohydr. Res. 264, 1– 19 (1994).

    Article  CAS  Google Scholar 

  16. Knegtel, R.M.A. et al J. Biol. Chem. 270, 29256– 29264 (1995).

    Article  CAS  Google Scholar 

  17. Namchuk, N.M. & Withers, S.G. Biochemistry 34, 16194–16202 (1995).

    Article  CAS  Google Scholar 

  18. McCarter, J.D., Adam, M.J. & Withers, S.G. Biochem. J. 286, 721– 727 (1992).

    Article  CAS  Google Scholar 

  19. Braun, C., Brayer, G.D. & Withers, S.G. J. Biol. Chem. 270, 26778– 26781 (1995).

    Article  CAS  Google Scholar 

  20. Strynadka, N.C.J. & James, M.N.G. J. Mol. Biol. 220, 401–424 ( 1991).

    Article  CAS  Google Scholar 

  21. Strokopytov, B. et al Biochemistry 35, 4241– 4249 (1996).

    Article  CAS  Google Scholar 

  22. Sulzenbacher, G., Driguez, H., Henrissat, B., Schülein, M. & Davies, G.J. Biochemistry 35, 15280–15287 (1996).

    Article  CAS  Google Scholar 

  23. Ploegman, J., Drent, G., Kalk, K. & Hol, W. J. Mol. Biol. 127, 149–162 (1979).

    Article  CAS  Google Scholar 

  24. Carey, F.A. & Sundberg, R.J. Advanced organic chemistry part A: structure and mechanism (Plenum Press, New York; 1990).

    Book  Google Scholar 

  25. Ajandouz, E.H. & Marchis-Mouren, G.J. Carbohydr. Res. 268, 267–277 ( 1995).

    Article  CAS  Google Scholar 

  26. Boel, E. et al. Biochemistry 29, 6244– 6249 (1990).

    Article  CAS  Google Scholar 

  27. Barak, D. et al. J. Am. Chem. Soc. 119, 3157– 3158 (1997).

    Article  CAS  Google Scholar 

  28. Wind, R.D., Uitdehaag, J.C.M., Buitelaar, R.M., Dijkstra, B.W. & Dijkhuizen, L. J. Biol. Chem. 273 , 5771–5779 (1998).

    Article  CAS  Google Scholar 

  29. Kabsch, W. J. Appl. Crystallogr. 21, 916–924 (1988).

    Article  CAS  Google Scholar 

  30. Otwinowski, Z. DENZO in Data collection and Processing (eds Sawyer, L., Isaacs, N. & Bailey, S.) 56–62 (SERC Laboratory, Daresbury, UK; 1993).

    Google Scholar 

  31. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 ( 1991).

    Article  Google Scholar 

  32. Tronrud, D.E., Ten Eyck, L. & Matthews, B.W. Acta Crystallogr. A 43, 489 –501 (1987).

    Article  Google Scholar 

  33. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  34. Hooft, R.W.W., Vriend, G., Sander, C. & Abola, E.E. Nature 381, 272–272 (1996).

    Article  CAS  Google Scholar 

  35. Jeffrey, G.A. Acta Crystallogr. B 46, 89–103 (1990).

    Article  Google Scholar 

  36. Brünger, A.T. Free R value: cross-validation in crystallography. Methods Enzymol. 277, 366–396.

  37. Vellieux, F.M.D. & Dijkstra, B.W. J. Appl. Crystallogr. 30, 396–399 ( 1997).

    Article  CAS  Google Scholar 

  38. Read, R.J. Acta Crystallogr. A 42, 140–149 (1986).

    Article  Google Scholar 

  39. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

Our thanks go to M. Dowd for ascertaining the true conformations of substrate and intermediate, and to T. Lindhorst for synthesizing 4-deoxymaltose. This work was supported by the EC grant entitled Structure-function relationships of glycosyltransferases.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uitdehaag, J., Mosi, R., Kalk, K. et al. X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the α-amylase family. Nat Struct Mol Biol 6, 432–436 (1999). https://doi.org/10.1038/8235

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/8235

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing