Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of human IgM rheumatoid factor Fab bound to its autoantigen IgG Fc reveals a novel topology of antibody—antigen interaction

Abstract

Rheumatoid factors are the characteristic autoantibodies of rheumatoid arthritis, which bind to the Fc regions of IgG molecules. Here we report the crystal structure of the Fab fragment of a patient-derived IgM rheumatoid factor (RF-AN) complexed with human lgG4 Fc, at 3.2 Å resolution. This is the first structure of an autoantibody–autoantigen complex. The epitope recognised in IgG Fc includes the Cγ2/Cγ3 cleft region, and overlaps the binding sites of bacterial Fc-binding proteins. The antibody residues involved in autorecognition are all located at the edge of the conventional combining site surface, leaving much of the latter available, potentially, for recognition of a different antigen. Since an important contact residue is a somatic mutation, the structure implicates antigen-driven selection, following somatic mutation of germline genes, in the production of pathogenic rheumatoid factors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tighe, H. & Carson, D.A. Rheumatoid Factor. In Textbook of Rheumatology (eds. Kelley, W.N., Harris, E.D., Ruddy, S. & Sledge, C.B.) 241–249 (W.B. Saunders, Philadelphia, 1997).

    Google Scholar 

  2. Mannik, M., Nardella, F.A. & Sasso, E.H. Rheumatoid factors in immune complexes of patients with rheumatoid arthritis. Springer Seminars in Immunopathol. 10, 215–230 (1988).

    Article  CAS  Google Scholar 

  3. Zvaifler, N.J. The immunopathology of joint inflammation in rheumatoid arthritis. Adv. Immunol. 16, 265–336 (1973).

    Article  CAS  Google Scholar 

  4. Vaughan, J.H. Pathogenetic concepts and origins of rheumatoid factor in rheumatoid arthritis. Arthritis Rheum. 36, 1–6 (1993).

    Article  CAS  Google Scholar 

  5. Steinitz, M., Izak, G., Cohen, S., Ehrenfeld, M. & Flechner, J. Continuous production of monoclonal rheumatoid factor by EBV-transformed lymphocytes. Nature 287, 443–445 (1980).

    Article  CAS  Google Scholar 

  6. Randen, I., Thompson, K.M., Natvig, J.B., Forre, O. & Waalen, K. Human monoclonal rheumatoid factors derived from the polyclonal repertoire of rheumatoid synovial tissue: production and characterisation. Clin. Exp. Immunol. 78, 13–18 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Brown, C.M.S., Plater-Zyberk, C., Mageed, R.A., Jefferis, R. & Maini, R.N. Analysis of immunoglobulins secreted by hybridomas derived from rheumatoid synovia. Clin. Exp. Immunol. 80, 366–372 (1990).

    Article  CAS  Google Scholar 

  8. Chen, P.P. & Carson, D.A. New insights on the physiological and pathological rheumatoid factors in humans. In Autoimmunity: Physiology and Disease (eds. Coutinho, A. & Kazatchkine, M.) 247–266 (Wiley-Liss, New York, 1994).

    Google Scholar 

  9. Pascual, V. et al. Nucleotide sequence analysis of rheumatoid factors and polyreactive antibodies derived from patients with rheumatoid athritis reveals diverse use of VH and VL gene segments and extensive variability in CDR-3. Scand. J. Immunol. 36, 349–362 (1992).

    Article  CAS  Google Scholar 

  10. Victor, K.D. & Capra, J.D. Light chain variable region gene repertoire in human autoantibodies. In Autoimmunity: Physiology and Disease (eds. Coutinho, A. & Kazatchkine, M.) 19–34 (Wiley-Liss, New York, 1994).

    Google Scholar 

  11. Pascual, V. et al. The complete nucleotide sequences of the heavy chain variable regions of six monopecific rheumatoid factors derived from Epstein-Barr virus transformed B cells isolated from the synovial tissue of patients with rheumatoid arthritis. J. Clin. Invest. 86, 1320–1328 (1990).

    Article  CAS  Google Scholar 

  12. Olee, T. et al. Genetic analysis of self-associating IgG rheumatoid factors from two rheumatoid synovia implicates an antigen-driven response. J. Exp. Med. 175, 831–842 (1992).

    Article  CAS  Google Scholar 

  13. Ermel, R.W., Kenny, T.P., Chen, P.P. & Robbins, D.L. Molecular analysis of rheumatoid factors derived from rheumatoid synovium suggests an antigen-driven response in inflamed joints. Arthritis Rheum. 36, 380–388 (1993).

    Article  CAS  Google Scholar 

  14. Sasso, E.H., Barber, C.V., Nardella, F.A., Yount, W.J. & Mannik, M. Antigenic specificities of human monoclonal and polyclonal IgM rheumatoid factors. The Cγ2- Cγ3 interface region contains the major determinants. J. Immunol. 140, 3098–3107 (1988).

    CAS  PubMed  Google Scholar 

  15. Bonagura, V.R. et al., Mapping studies reveal unique epitopes on IgG recognised by rheumatoid arthritis-derived monoclonal rheumatoid factors. J. Immunol. 151, 3840–3852 (1993).

    CAS  PubMed  Google Scholar 

  16. Steinitz, M. & Tamir, S. Human monoclonal autoimmune antibody produced in vitro: rheumatoid factor generated by Epstein-Barr virus-transformed cell line. Eur. J. Immunol. 12, 126–133 (1982).

    Article  CAS  Google Scholar 

  17. Sohi, M.K. et al. Crystallization of a complex between the Fab fragment of a human immunoglobulin M (IgM) rheumatoid factor (RF-AN) and the Fc fragment of human lgG4 Fc. Immunology 88, 636–641 (1996).

    Article  CAS  Google Scholar 

  18. Jefferis, R., Nik Jaafer, M.I. & Steinitz, M. Immunogenic and antigenic epitopes of immunoglobulins. VIII. A human monoclonal rheumatoid factor having specificity for a discontinuous epitope determined by histidine/arginine interchange at residue 435 of immunoglobulin G. Immunol. Lett. 7, 191–194 (1984).

    Article  CAS  Google Scholar 

  19. Padlan, E.A. Anatomy of the antibody molecule. Mol. Immunol. 31, 169–217 (1994).

    Article  CAS  Google Scholar 

  20. Wilson, I.A. & Stanfield, R.L. Antibody-antigen interactions: new structures and new conformational changes. Curr. Opin. Struct. Biol. 4, 857–867 (1994).

    Article  CAS  Google Scholar 

  21. Malby, R.L. et al. The structure of a complex between the NC10 antibody and influenza virus neuraminidase and comparison with the overlapping binding site of the NC41 antibody. Structure 2, 733–746 (1994).

    Article  CAS  Google Scholar 

  22. Connolly, M.L. Analytical molecular surface calculation. J. Appl. Crystallogr. 16, 548–558 (1983).

    Article  CAS  Google Scholar 

  23. Davies, D.R. & Cohen, G.H. Interactions of protein antigens with antibodies. Proc. Natl. Acad. Sci. USA 93, 7–12 (1996).

    Article  CAS  Google Scholar 

  24. Tulip, W.R., Varghese, J.N., Laver, W.G., Webster, R.G. & Colman, P.M. Refined crystal structure of the influenza virus N9 neuraminidase-NC41 Fab complex. J. Mol. Biol. 227, 122–148 (1992).

    Article  CAS  Google Scholar 

  25. Deisenhofer, J. Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9- and 2.8-Å resolution. Biochemistry 20, 2361–2370 (1981).

    Article  CAS  Google Scholar 

  26. Sauer-Eriksson, A.E., Kleywegt, G.J., Uhlen, M. & Jones, T.A. Crystal structure of the C2 fragment of streptococcal protein G in complex with the Fc domain of human IgG. Structure 3, 265–278 (1995).

    Article  CAS  Google Scholar 

  27. Burmeister, W.P., Huber, A.H. & Bjorkman, P.J. Crystal structure of the complex of rat neonatal Fc receptor with Fc. Nature 372, 379–383 (1994).

    Article  CAS  Google Scholar 

  28. Oppliger, I.R., Nardella, F.A., Stone, G.C. & Mannik, M. Human rheumatoid factors bear the internal image of the Fc binding region of Staphylococcal protein A. J. Exp, Med. 166, 702–710 (1987).

    Article  CAS  Google Scholar 

  29. Jefferis, R. et al. A comparative study of the N-linked oligosaccharide structures of human IgG subclass proteins. Biochem. J. 268, 529–537 (1990).

    Article  CAS  Google Scholar 

  30. Malhotra, R. et al. Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nature Medicine 1, 237–243 (1995).

    Article  CAS  Google Scholar 

  31. Parekh, R.B. et al. Galactosylation of IgG associated oligosaccharides: reduction in patients with adult and juvenile onset rheumatoid arthritis and relation to disease activity. Lancet i, 966–969 (1988).

    Article  Google Scholar 

  32. Soltys, A.J. et al. The binding of synovial tissue-derived human monoclonal immunoglobulin M rheumatoid factor to immunoglobulin G preparations of differing galactose content. Scand. J. Immunol. 40, 135–143 (1994).

    Article  CAS  Google Scholar 

  33. Soltys, A.J., Bond, A., Westwood, O.M.R. & Hay, F.C. The effects of altered glycosylation of IgG on rheumatoid factor-binding and immune complex formation. In Glycoimmunology (eds. Alavi, A. & Axford, J.S.) 155–160 (Plenum Press, New York, 1995).

    Chapter  Google Scholar 

  34. Newkirk, M. Fc glycosylation and rheumatoid factors. In Abnormalities of IgG Glycosylation and Immunological Disorders, (eds. Isenberg, D.A. & Rademacher, T.W.) 119–130 (John Wiley & Sons Ltd., 1996).

    Google Scholar 

  35. Randen, I. et al. Clonally related IgM rheumatoid factors undergo affinity maturation in rheumatoid synovial inflammation. J. Immunol. 148, 3296–3301 (1992).

    CAS  PubMed  Google Scholar 

  36. Sohi, M.K. et al. Crystallisation and preliminary X-ray analysis of the Fab fragment of a human monoclonal IgM rheumatoid factor (2A2). J. Mol. Biol. 242, 706–708 (1994).

    Article  CAS  Google Scholar 

  37. Collaborative Computational Project, Number 4. The CCP4 Suite: Programs for Protein Crystallography. Acta Crystallogr., D50, 760–763 (1994).

  38. Marquart, M., Deisenhofer, J., Huber, R. & Palm, W. Crystallographic refinement and atomic models of the intact immunoglobulin molecule Kol and its antigen-binding fragment at 3.0Å and 1.9Å resolution. J. Mol. Biol. 141, 369–391 (1980).

    Article  CAS  Google Scholar 

  39. Navaza, J. AMoRE - an automated package for molecular replacement. Acta Crystallogr. A50, 157–163 (1994).

    Article  CAS  Google Scholar 

  40. Brunger, A.T. X-PLOR (Ver. 3.1): A system for Crystallography and NMR (Yale University, New Haven, CT, USA, 1992).

  41. Jones, T.A., Bergdoll, M. & Kjeldgaard, M. Crystallographic Computing and Modeling Methods in Molecular Design (Springer, New York, 1993).

    Google Scholar 

  42. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK - A program to check the stereochemical quality of protein structures. J.Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  43. Evans, S.V. SETOR: hardware lighted three dimensional solid model representations of macromolecules. J. Mol. Graphics 11, 134–138 (1993).

    Article  CAS  Google Scholar 

  44. Sheriff, S. Some methods for examining the interactions between two molecules. Immunomethods 3, 191–196 (1993).

    Article  CAS  Google Scholar 

  45. Kabat, E.A., Wu, T.T., Perry, H.M., Gottesman, K.S. & Foeler, C. Sequences of Proteins of Immunological Interest (US Department of Health and Human Services, NIH, Bethesda,MD, USA, 1991).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corper, A., Sohi, M., Bonagura, V. et al. Structure of human IgM rheumatoid factor Fab bound to its autoantigen IgG Fc reveals a novel topology of antibody—antigen interaction. Nat Struct Mol Biol 4, 374–381 (1997). https://doi.org/10.1038/nsb0597-374

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0597-374

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing