Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interhelical hydrogen bonding drives strong interactions in membrane proteins

Abstract

Polar residues in transmembrane α-helices may strongly influence the folding or association of integral membrane proteins. To test whether a motif that promotes helix association in a soluble protein could do the same within a membrane, we designed a model transmembrane helix based on the GCN4 leucine zipper. We found in both detergent miscelles and biological membranes that helix association is driven strongly by asparagine, independent of the rest of the hydrophobic leucine and/or valine sequence. Hydrogen bonding between membrane helices gives stronger associations than the packing of surfaces in glycophorin A helices, creating an opportunity to stabilize structures, but also implying a danger that non-specific interactions might occur. Thus, membrane proteins may fold to avoid exposure of strongly hydrogen bonding groups at their lipid exposed surfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transmembrane helix designs.
Figure 2: SDS-PAGE of SN chimeras.
Figure 3: Competition experiment with VNVV peptide.
Figure 4: Interactions between SN chimeras and VNVV peptide.
Figure 5: TOXCAT assays of transmembrane helix association.
Figure 6: Proton NMR spectra of the synthetic membrane leucine zipper.
Figure 7: CD of the synthetic membrane peptide VNVV in SDS micelles.
Figure 8: Possible models that describe the equilibrium and hydrogen bonding patterns predicted by the NMR data.

Similar content being viewed by others

References

  1. Popot, J.-L. & Engelman, D.M. Membrane protein folding and oligomerization: the two-stage model. Biochemistry 29, 4031–4037 (1990).

    Article  CAS  Google Scholar 

  2. Engelman, D.M. & Steitz, T.A. On the folding and insertion of globular membrane proteins. in The protein folding problem (ed. Wetlaufer, D.B.) 87–113 (Westview, Boulder, Colorado, 1984).

    Google Scholar 

  3. Lemmon, M.A. et al. Glycophorin A dimerization is driven by specific interactions between transmembrane α-helices. J. Biol. Chem. 267, 7683–7689 (1992).

    CAS  Google Scholar 

  4. Lemmon, M.A., Flanagan, J.M., Treutlein, H.R., Zhang, J. & Engelman, D.M. Sequence specificity in the dimerization of transmembrane α-helices. Biochemistry 31, 12719–12725 (1992).

    Article  CAS  Google Scholar 

  5. Lemmon, M.A., Treutlein, H.R., Adams, P.D., Brunger, A.T. & Engelman, D.M. A dimerization motif for transmembrane α-helices . Nature Struct. Biol. 1, 157– 163 (1994).

    Article  CAS  Google Scholar 

  6. Treutlein, H.R., Lemmon, M.A., Engelman, D.M. & Brunger, A.T. The glycophorin A transmembrane domain dimer: sequence-specific propensity for a right-handed supercoil of helices. Biochemistry 31, 12726–12733 (1992).

    Article  CAS  Google Scholar 

  7. Langosch, D., Brosig, B., Kolmar, H. & Fritz, H.-J. Dimerisation of the glycophorin A transmembrane segment in membranes probed with the ToxR transcription activator. J. Mol. Biol., 525– 530 (1996).

  8. MacKenzie, K.R., Prestegard, J.H. & Engelman, D.M. A transmembrane helix dimer: structure and implications . Science 276, 131–133 (1997).

    Article  CAS  Google Scholar 

  9. MacKenzie, K.R. & Engelman, D.M. Structure-based prediction of the stability of transmembrane helix-helix interactions: the sequence dependence of glycophorin A dimerization. Proc. Natl. Acad. Sci. USA 95, 3583–3590 (1998).

    Article  CAS  Google Scholar 

  10. Russ, W.P. & Engelman, D.M. TOXCAT: a measure of transmembrane helix association in a biological membrane. Proc. Natl. Acad. Sci. USA 96, 863–868 ( 1999).

    Article  CAS  Google Scholar 

  11. Fleming, K.G., Ackerman, A.L. & Engelman, D.M. The effect of point mutations on the free energy of transmembrane α-helix dimerization. J. Mol. Biol. 272, 266–275 (1997).

    Article  CAS  Google Scholar 

  12. Deisenhofer, J., Epp, O., Miki, K., Huber, R. & Michel, H. Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3A resolution. Nature 318, 618–624 ( 1985).

    Article  CAS  Google Scholar 

  13. Henderson, R. et al. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 213, 899–929 (1990).

    Article  CAS  Google Scholar 

  14. O' Shea, E.K., Klemm, J.D., Kim, P.S. & Alber, T. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science 254, 539–544 ( 1991).

    Article  Google Scholar 

  15. Jones, D.T., Taylor, W.R. & Thornton, J.M. A mutation data matrix for transmembrane proteins . FEBS Lett. 339, 269–275 (1994).

    Article  CAS  Google Scholar 

  16. Samatey, F.A., Xu, C. & Popot, J.-L. On the distribution of amino acid residues in transmembrane α-helix bundles. Proc. Natl. Acad. Sci. USA 92, 4577–4581 (1995).

    Article  CAS  Google Scholar 

  17. Arkin, I.T. & Brunger, A.T. Statistical analysis of predicted transmembrane α-helices. Biochim. Biophys. Acta 1429, 113–128 (1998).

    Article  CAS  Google Scholar 

  18. Arkin, I. et al. Structural organization of the pentameric transmembrane α-helices of phospholamban, a cardiac ion channel. EMBO J. 13 , 4757–4764 (1994).

    Article  CAS  Google Scholar 

  19. Kolmar, H. et al. Membrane insertion of the bacterial signal transduction protein ToxR and requirements of transcription activation studied by modular replacement of different protein substitution. EMBO J. 14, 3895–3904 (1995).

    Article  CAS  Google Scholar 

  20. Harbury, P.B., Zhang, T., Kim, P.S. & Alber, T. A switch between two-, three- and four-stranded coiled coils in GCN4 leucine zipper mutants . Science 262, 1401–1407 (1993).

    Article  CAS  Google Scholar 

  21. Lovejoy, B. et al. Crystal structure of a synthetic triple-stranded α-helical bundle. Science 259, 1288– 1293 (1993).

    Article  CAS  Google Scholar 

  22. Zhu, B.-Y., Zhou, N.E., Kay, C.M. & Hodges, R.S. Packing and hydrophobicity effects on protein folding and stability: Effects of β-branched amino acids, valine and isoleucine, on the formation of stability of two-stranded α-helical coiled coils/leucine zippers. Protein Sci. 2, 383–394 (1993).

    Article  CAS  Google Scholar 

  23. Zhou, N.E., Kay, C.M. & Hodges, R.S. The role of interhelical ionic interactions in controlling protein folding and stability: De novo designed synthetic two-stranded α-helical coiled coils. J. Mol. Biol. 237, 500– 512 (1994).

    Article  CAS  Google Scholar 

  24. Zhou, N.E., Kay, C.M. & Hodges, R.S. The net energetic contribution of interhelical electrostatic attractions to coiled-coil stability. Protein Eng. 7, 1365–1372 (1994).

    Article  CAS  Google Scholar 

  25. Lumb, K.J. & Kim, P.S. A buried polar interaction imparts structural uniqueness in a designed heterodimeric coiled coil. Biochemistry 34, 8642–8648 (1995).

    Article  CAS  Google Scholar 

  26. Gurezka, R., Laage, R., Brosig, B. & Langosch, D. A heptad motif of leucine residues found in membrane proteins can drive self-assembly of artificial transmembrane segments. J. Biol. Chem. 274 , 9265–9270 (1999).

    Article  CAS  Google Scholar 

  27. Potekhin, S.A., Medvedkin, V.N., Kashparov, I.A. & Venyaminov, S.Y. Synthesis and properties of the peptide corresponding to the mutant form of the leucine zipper of the transcriptional activator GCN4 form yeast. Protein Eng. 7, 1097–1101 (1994).

    Article  CAS  Google Scholar 

  28. Vieth, M., Kolinski, A. & Skolnick, J. Method for predicting the state of association of discretized protein models: Applications to leucine zippers. Biochemistry 35, 955–967 (1996).

    Article  CAS  Google Scholar 

  29. Zeng, X., Herndon, A.M. & Hu, J.C. Buried asparagines determine the dimerization specificities of leucine zipper mutants. Proc. Natl. Acad. Sci. USA 94, 3673–3678 (1997).

    Article  CAS  Google Scholar 

  30. Choma, C., Gratkowski, H., Lear, J.D. & DeGrado, W.F. A membrane-soluble analogue of the two-stranded coiled coil from GCN4. Nature Struct. Biol. 7, 161–166 (2000).

    Article  CAS  Google Scholar 

  31. Gonzalez, L., Woolfson, D.N. & Alber, T. Buried polar residues and structural specificity in the GCN4 leucine zipper. Nature Struct. Biol. 3, 1011–1018 (1996).

    Article  CAS  Google Scholar 

  32. Gonzalez, L., Brown, R.A., Richardson, D. & Alber, T. Crystal structures of a single coiled-coil peptide in two oligomeric states reveal the basis for structural polymorphism. Nature Struct. Biol. 3, 1002–1010 ( 1996).

    Article  CAS  Google Scholar 

  33. Gonzalez, L., Plecs, J.J. & Alber, T. An engineered allosteric switch in leucine-zipper oligomerization . Nature Struct. Biol. 3, 510– 515 (1996).

    Article  CAS  Google Scholar 

  34. Drees, B.L., Grotkopp, E.K. & Nelson, H.C.M. The GCN4 leucine zipper can functionally substitute for the heat shock transcription factor's trimerization domain. J. Mol. Biol. 273, 61–74 (1997).

    Article  CAS  Google Scholar 

  35. Junius, F.K. et al. Nuclear magnetic resonance characterization of the Jun leucine zipper domain: unusual properties of coiled-coil interfacial polar residues . Biochemistry 34, 6164– 6174 (1995).

    Article  CAS  Google Scholar 

  36. Engelman, D.M., Steitz, T.A. & Goldman, A. Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu. Rev. Biophys. Biophys. Chem. 15, 321–353 ( 1986).

    Article  CAS  Google Scholar 

  37. Bargmann, C.I., Hung, M.-C. & Weinberg, R.A. Multiple Independent activations of the neu oncogene by a point mutation altering the transmembrane domain of p185. Cell 45, 649–657 ( 1986).

    Article  CAS  Google Scholar 

  38. Weiner, D.B., Liu, J., Cohen, J.A., Williams, W.V. & Greene, M.I. A point mutation in the neu oncogene mimics ligand induction of receptor aggregation. Nature 339, 230–231 (1989).

    Article  CAS  Google Scholar 

  39. Hynes, N.E. & Stern, D.F. The biology of erbB-2/neu/HER-2 and its role in cancer. Biochim. Biophys. Acta 1198 , 165–184 (1994).

    PubMed  Google Scholar 

  40. Smith, S.O., Smith, C.S. & Bormann, B.J. Strong hydrogen bonding interactions involving a buried glutamic acid in the transmembrane sequence of the neu/erbB-2 receptor. Nature Struct. Biol. 3, 252–258 (1996).

    Article  CAS  Google Scholar 

  41. Fields, G.B. & Noble, R.L. Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int. J. Peptide Protein Res. 35, 161–214 ( 1990).

    Article  CAS  Google Scholar 

  42. Piotto, M., Saudek, V. & Sklenar, V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J. Biomol. NMR 2 , 661–665 (1992).

    Article  CAS  Google Scholar 

  43. Altieri, A. & Byrd, R.A. Randomization approach to water suppression in multidimensional NMR using pulsed field gradients. J. Magn. Reson. 107B, 260–266 ( 1995).

    Article  Google Scholar 

  44. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277– 293 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P.D. Adams, K. R. MacKenzie, A. Senes and I. Ubarretxena for helpful discussions. We are also indebted to L. Fisher for advice and assistance in peptide synthesis. We kindly acknowledge G. King for permission to adapt a figure. This research is funded with a program project grant on helix interactions in membrane proteins (National Institute of Health) and the National Foundation for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald M. Engelman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao Zhou, F., Cocco, M., Russ, W. et al. Interhelical hydrogen bonding drives strong interactions in membrane proteins. Nat Struct Mol Biol 7, 154–160 (2000). https://doi.org/10.1038/72430

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/72430

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing