Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Asparagine-mediated self-association of a model transmembrane helix

Abstract

In membrane proteins, the extent to which polarity, hydrogen bonding, and van der Waals packing interactions of the buried, internal residues direct protein folding and association of transmembrane segments is poorly understood. The energetics associated with these various interactions should differ substantially between membrane versus water-soluble proteins. To help evaluate these energetics, we have altered a water-soluble, two-stranded coiled-coil peptide to render its sequence soluble in membranes. The membrane-soluble peptide associates in a monomer-dimer-trimer equilibrium, in which the trimer predominates at the highest peptide/detergent ratios. The oligomers are stabilized by a buried Asn side chain. Mutation of this Asn to Val essentially eliminates oligomerization of the membrane-soluble peptide. Thus, within a membrane-like environment, interactions involving a polar Asn side chain provide a strong thermodynamic driving force for membrane helix association.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequences of peptides and SDS-PAGE of MS1 and variants.
Figure 2: Association of MS1 and N14V in C12E8 micelles, as determined by fluorescence resonance energy transfer.
Figure 3: Determination of the association state of MS1 using fluorescence resonance energy transfer in C14-betaine micelles.
Figure 4: Analytical ultracentrifugation of NBD-MS1 in C14-betaine micelles.
Figure 5: Analytical ultracentrifugation of NBD–N14V in C14-betaine micelles.

Similar content being viewed by others

References

  1. O'Shea, E.K., Klemm, J.D., Kim, P.S. & Alber, T.A. X-ray structure of the GCN4 leucine zipper, a two-stranded coiled coil. Science 254, 539–544 ( 1991).

    Article  CAS  Google Scholar 

  2. Harbury, P.B., Zhang, T., Kim, P.S. & Alber, T. A switch between two-, three-, and four-stranded coiled coils. Science 262, 1401–1407 (1993).

    Article  CAS  Google Scholar 

  3. Harbury, P.B., Kim, P.S. & Alber, T. Crystal structure of an isoleucine-zipper trimer. Nature 371, 80–83 ( 1994).

    Article  CAS  Google Scholar 

  4. Lemmon, M.A. et al. Glycophorin A Dimerization is Driven by Specific Interactions between Transmembrane alpha Helices. J. Biol. Chem. 267, 7683–7689 (1991).

    Google Scholar 

  5. Arkin, I.T. et al. Structural organization of the pentameric transmembrane alpha-helices of phospholamban, a cardiac ion channel. EMBO J. 13 , 4757–4764 (1994).

    Article  CAS  Google Scholar 

  6. Simmerman, H.K., Kobayashi, Y.M., Autry, J.M. & Jones, L.R. A leucine zipper stabilizes the pentameric membrane domain of phospholamban and forms a coiled-coil pore structure. J. Biol. Chem. 271, 5941–5946 (1996).

    Article  CAS  Google Scholar 

  7. Reddy, L.G., Jones, L.R. & Thomas, D.D. Depolymerization of phospholamban in the presence of calcium pump: a fluorescence energy transfer study. Biochemistry 38, 3954–3962 ( 1999).

    Article  CAS  Google Scholar 

  8. London, E. & Khorana, H.G. Denaturation and renaturation of bacteriorhodopson. J. Biol. Chem. 257, 7003–7011 (1982).

    CAS  PubMed  Google Scholar 

  9. Chung, L.A., Lear, J.D. & DeGrado, W.F. Fluorescence studies of the secondary structure and orientation of a model ion channel peptide in phospholipid vesicles. Biochemistry 31, 6608–6616 (1992).

    Article  CAS  Google Scholar 

  10. Li, M. et al. A fluorescence energy transfer method for analyzing protein oligomeric structure: application to phospholamban Biophys. J. 76, 2587–2599 (1999).

    Article  CAS  Google Scholar 

  11. Adair, B.D. & Engelman, D.M. Glycophorin A helical transmembrane domains dimerize in phospholipid bilayers: A resonance energy transfer study . Biochemistry 33, 5539– 5544 (1994).

    Article  CAS  Google Scholar 

  12. Vorherr, T., Wrzosek, A., Chiesi, M. & Carafoli, E. Total synthesis and functional properties of the membrane-intrinsic protein phospholamban . Protein Sci. 2, 339–347 (1993).

    Article  CAS  Google Scholar 

  13. Tanford, C., Nozaki, Y., Reynolds, J.A. & Makino, S. Molecular characterization of proteins in detergent solutions. Biochemistry 13, 2369–2376 (1974).

    Article  CAS  Google Scholar 

  14. Gonzalez,L., Brown, R.A., Richardson, D. & Alber, T. Crystal structures of a single coiled-coil peptide in two olomeric states reveal the basis for structural polymorphism. Nature Struct. Biol. 3, 1002–1010 ( 1996).

    Article  CAS  Google Scholar 

  15. Zhou, F.X., Cocco, M.J., Russ, W.P., Brunger, A.T. & Engleman, D.M. Interhelical hydrogen bonding drives strong interactions in membrane proteins. Nature Struct. Biol. 7, 154–160 (2000).

    Article  CAS  Google Scholar 

  16. Weis, W.I., Brunger, A.T., Skehel, J.J. & Wiley, D.C. Refinement of the influenza virus hemagglutinin by simulated annealing. J. Mol. Biol. 212, 737–761 (1990).

    Article  CAS  Google Scholar 

  17. Schneider, J.P., Lombardi, A. & DeGrado, W.F. Analysis and design of three-stranded coiled coils and three-helix bundles. Folding & Design 3, R29–40 (1998).

    Article  Google Scholar 

  18. Stevens, T.J. & Arkin, I.T. Are membrane proteins “inside-out” proteins. Proteins 36, 135– 143 (1999).

    Article  CAS  Google Scholar 

  19. Kochendoerfer, G.G., Salom, D., Lear, J., Kent, S. & DeGrado, W.F. Total chemical synthesis of the integral membrane protein influenza A virus M2: role of its C-terminal domain in tetramer assembly. Biochemistry 38, 11905–11913 (1999).

    Article  CAS  Google Scholar 

  20. Fleming, K.G., Ackerman, A.L. & Engelman, D.M. The effect of point mutations on the free energy of transmembrane alpha- helix dimerization. J. Mol. Biol. 272, 266–275 (1997).

    Article  CAS  Google Scholar 

  21. Laue, T., Shaw, B.D., Ridgeway, T.M. & Pelletier, S.L. in Analytical ultracentrifugation in biochemistry and polymer science (eds Harding, S.E., Rowe, A.J. & Horton, J.C.) 90– 125 (The Royal Society of Chemistry, Cambridge, UK; 1992).

    Google Scholar 

  22. Kharakoz, D.P. Partial volumes and compressibilities of extended polypeptide chains in aqueous solution: addititivity scheme and implication of protein unfolding at normal and high pressure. Biochemistry. 36, 10276 –10285 (1997).

    Article  CAS  Google Scholar 

  23. Popot, J.L., Gerchman, S.E. & Engelman, D.M. Refolding of bacteriorhodopsin in lipid bilayers. A thermodynamically controlled two-stage process. J. Mol. Biol. 198, 655–676 ( 1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to James D. Lear or William F. DeGrado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choma, C., Gratkowski, H., Lear, J. et al. Asparagine-mediated self-association of a model transmembrane helix. Nat Struct Mol Biol 7, 161–166 (2000). https://doi.org/10.1038/72440

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/72440

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing