Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Microvascular dysfunction and efficacy of PDE5 inhibitors in BPH–LUTS

Abstract

Benign prostatic hyperplasia (BPH)-related lower urinary tract symptoms (LUTS) and erectile dysfunction commonly coexist, and both respond to phosphodiesterase (PDE) 5 inhibitors, suggesting a shared pathophysiological mechanism. We propose that both BPH–LUTS and erectile dysfunction are caused by microvascular dysfunction within the pelvic organs, and we present an overview of preclinical and clinical studies supporting the hypothesis that, within both the penis and the lower urinary tract, a combination of endothelial and neural dysfunction leads to a vicious cycle of hypoxia, vasoconstriction, altered smooth muscle contractility, and degeneration of autonomic neurons and ganglia. This hypothesis explains much of the preclinical and clinical research relating to these two conditions, and provides a rationale for further investigation into the effects of PDE5 inhibitors on the pathophysiology and symptoms of BPH–LUTS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed microvascular dysfunction hypothesis linking BPH–LUTS and erectile dysfunction.
Figure 2: The role of NO, cGMP and PDE5 in the male genitourinary tract.

Similar content being viewed by others

References

  1. Verhamme, K. M. et al. Incidence and prevalence of lower urinary tract symptoms suggestive of benign prostatic hyperplasia in primary care--the Triumph project. Eur. Urol. 42, 323–328 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Irwin, D. E., Kopp, Z. S., Agatep, B., Milsom, I. & Abrams, P. Worldwide prevalence estimates of lower urinary tract symptoms, overactive bladder, urinary incontinence and bladder outlet obstruction. BJU Int. 108, 1132–1138 (2011).

    Article  PubMed  Google Scholar 

  3. Rosen, R. et al. Lower urinary tract symptoms and male sexual dysfunction: the multinational survey of the aging male (MSAM-7). Eur. Urol. 44, 637–649 (2003).

    Article  PubMed  Google Scholar 

  4. Parsons, J. K. Benign prostatic hyperplasia and male lower urinary tract symptoms: epidemiology and risk factors. Curr. Bladder Dysfunct. Rep. 5, 212–218 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Braun, M. H. et al. Lower urinary tract symptoms and erectile dysfunction: co-morbidity or typical “Aging Male” symptoms? Results of the “Cologne Male Survey”. Eur. Urol. 44, 588–594 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Boyle, P. et al. The association between lower urinary tract symptoms and erectile dysfunction in four centres: the UrEpik study. BJU Int. 92, 719–725 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Gacci, M. et al. Critical analysis of the relationship between sexual dysfunctions and lower urinary tract symptoms due to benign prostatic hyperplasia. Eur. Urol. 60, 809–825 (2011).

    Article  PubMed  Google Scholar 

  8. Kim, S. et al. Association between lower urinary tract symptoms and vascular risk factors in aging men: the Hallym Aging Study. Korean J. Urol. 51, 477–482 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gratzke, C. et al. Anatomy, physiology, and pathophysiology of erectile dysfunction. J. Sex. Med. 7, 445–475 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Hackett, G. The burden and extent of comorbid conditions in patients with erectile dysfunction. Int. J. Clin. Pract. 63, 1205–1213 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Roehrborn, C. G., McVary, K. T., Elion-Mboussa, A. & Viktrup L. Tadalafil administered once daily for lower urinary tract symptoms secondary to benign prostatic hyperplasia: a dose finding study. J. Urol. 180, 1228–1234 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Porst, H. et al. Efficacy and safety of tadalafil once daily in the treatment of men with lower urinary tract symptoms suggestive of benign prostatic hyperplasia: results of an international randomized, double-blind, placebo-controlled trial. Eur. Urol. 60, 1105–1113 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Carrier, S. et al. Efficacy and safety of oral tadalafil in the treatment of men in Canada with erectile dysfunction: a randomized, double-blind, parallel, placebo-controlled clinical trial. J. Sex. Med. 2, 685–698 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Andersson, K. E. et al. Tadalafil for the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia: pathophysiology and mechanism(s) of action. Neurourol. Urodyn. 30, 292–301 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Giuliano, F. et al. The mechanism of action of phosphodiesterase type 5 inhibitors in the treatment of lower urinary tract symptoms related to benign prostatic hyperplasia. Eur. Urol. 63, 506–516 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Gacci, M. et al. PDE5-Is for the treatment of concomitant ED and LUTS/BPH. Curr. Bladder Dysfunct. Rep. 8, 150–159 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rahnama'i, M. S., Uckert, S., Hohnen, R. & van Koeveringe, G. A. The role of phosphodiesterases in bladder pathophysiology. Nat. Rev. Urol. 10, 414–424 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Sitia, S. et al. From endothelial dysfunction to atherosclerosis. Autoimmun. Rev. 9, 830–834 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Wong, W. T., Wong, S. L., Tian, X. Y. & Huang, Y. Endothelial dysfunction: the common consequence in diabetes and hypertension. J. Cardiovasc. Pharmacol. 55, 300–307 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, H., Dellsperger, K. C. & Zhang, C. The link between metabolic abnormalities and endothelial dysfunction in type 2 diabetes: an update. Basic Res. Cardiol. 107, 237 (2012).

    Article  PubMed  Google Scholar 

  21. Tziomalos, K., Athyros, V. G., Karagiannis, A. & Mikhailidis, D. P. Endothelial dysfunction in metabolic syndrome: prevalence, pathogenesis and management. Nutr. Metab. Cardiovasc. Dis. 20, 140–146 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Brevetti, G., Schiano, V. & Chiariello, M. Endothelial dysfunction: a key to the pathophysiology and natural history of peripheral arterial disease? Atherosclerosis 197, 1–11 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Warnholtz, A., Mollnau, H., Oelze, M., Wendt, M. & Münzel, T. Antioxidants and endothelial dysfunction in hyperlipidemia. Curr. Hypertens. Rep. 3, 53–60 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Matz, R. L. & Andriantsitohaina, R. Age-related endothelial dysfunction: potential implications for pharmacotherapy. Drugs Aging 20, 527–550 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Bivalacqua, T. J., Usta, M. F., Champion, H. C., Kadowitz, P. J. & Hellstrom W. J. Endothelial dysfunction in erectile dysfunction: role of the endothelium in erectile physiology and disease. J. Androl. 24, S17–S37 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Lee, M. et al. Efficient gene expression system using the RTP801 promoter in the corpus cavernosum of high-cholesterol diet-induced erectile dysfunction rats for gene therapy. J. Sex. Med. 5, 1355–1364 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. De, E. J. et al. Pelvic ischemia is measurable and symptomatic in patients with coronary artery disease: a novel application of dynamic contrast-enhanced magnetic resonance imaging. J. Sex. Med. 5, 2635–2645 (2008).

    Article  PubMed  Google Scholar 

  28. Ryu, J. K. et al. Gene therapy with an erythropoietin enhancer-mediated, hypoxia-inducible gene expression system in the corpus cavernosum of mice with high-cholesterol diet-induced erectile dysfunction. J. Androl. 33, 845–853 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Versari, D., Daghini, E., Virdis, A., Ghiadoni, L. & Taddei, S. Endothelial dysfunction as a target for prevention of cardiovascular disease. Diabetes Care 32 (Suppl. 2), S314–S321 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Förstermann, U. & Sessa, W. C. Nitric oxide synthases: regulation and function. Eur. Heart J. 33, 829–837 (2012).

    Article  PubMed  CAS  Google Scholar 

  31. Melikian, N., Seddon, M. D., Casadei, B., Chowienczyk, P. J. & Shah, A. M. Neuronal nitric oxide synthase and human vascular regulation. Trends Cardiovasc. Med. 19, 256–262 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Birder, L. A. Urinary bladder urothelium: molecular sensors of chemical/thermal/ mechanical stimuli. Vascul. Pharmacol. 45, 221–226 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Wei, B. et al. Nitric oxide mediates stretch-induced Ca2+ release via activation of phosphatidylinositol 3-kinase-Akt pathway in smooth muscle. PLoS ONE 3, e2526 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Munoz, A., Smith, C. P., Boone, T. B. & Somogyi, G. T. Overactive and underactive bladder dysfunction is reflected by alterations in urothelial ATP and NO release. Neurochem. Int. 58, 295–300 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Burnstock, G. Local mechanisms of blood flow control by perivascular nerves and endothelium. J. Hypertens. Suppl. 8, S95–S106 (1990).

    Article  CAS  PubMed  Google Scholar 

  36. Prieto, D. Physiological regulation of penile arteries and veins. Int. J. Impot. Res. 20, 17–29 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Beetson, K., Smith, S., Cellek, S., Cameron, N. & Cotter, M. Characterization of the blood vessels and their nitrergic innervation in the rat major pelvic ganglia. J. Sex. Med. 9 (Suppl. s5), 310 (2012).

    Google Scholar 

  38. Appenzeller, O., Dhital, K. K., Cowen, T. & Burnstock, G. The nerves to blood vessels supplying blood to nerves: the innervation of vasa nervorum. Brain Res. 304, 383–386 (1984).

    Article  CAS  PubMed  Google Scholar 

  39. Cellek, S., Cameron, N. E., Cotter, M. A. & Muneer, A. Pathophysiology of diabetic erectile dysfunction: potential contribution of vasa nervorum and advanced glycation endproducts. Int. J. Impot. Res. 25, 1–6 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Siervo, M., Corander, M., Stranges, S. & Bluck, L. Post-challenge hyperglycaemia, nitric oxide production and endothelial dysfunction: the putative role of asymmetric dimethylarginine (ADMA). Nutr. Metab. Cardiovasc. Dis. 21, 1–10 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Akbari, C. M. et al. Endothelium-dependent vasodilatation is impaired in both microcirculation and macrocirculation during acute hyperglycemia. J. Vasc. Surg. 28, 687–694 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Williams, S. B. et al. Acute hyperglycemia attenuates endothelium-dependent vasodilation in humans in vivo. Circulation 97, 1695–1701 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Kawano, H. et al. Hyperglycemia rapidly suppresses flow-mediated endothelium-dependent vasodilation of brachial artery. J. Am. Coll. Cardiol. 34, 146–154 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Title, L. M., Cummings, P. M., Giddens, K. & Nassar, B. A. Oral glucose loading acutely attenuates endothelium-dependent vasodilation in healthy adults without diabetes: an effect prevented by vitamins C and E. J. Am. Coll. Cardiol. 36, 2185–2191 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Tesfamariam, B., Brown, M. L., Deykin, D. & Cohen, R. A. Elevated glucose promotes generation of endothelium-derived vasoconstrictor prostanoids in rabbit aorta. J. Clin. Invest. 85, 929–932 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Levy, B. I. et al. Impaired tissue perfusion: a pathology common to hypertension, obesity, and diabetes mellitus. Circulation 118, 968–976 (2008).

    Article  PubMed  Google Scholar 

  47. Endemann, D. H. & Schiffrin, E. L. Endothelial dysfunction. J. Am. Soc. Nephrol. 15, 1983–1992 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Cellek, S., Anderson, P. N. & Foxwell, N. A. Nitrergic neurodegeneration in cerebral arteries of streptozotocin-induced diabetic rats: a new insight into diabetic stroke. Diabetes 54, 212–219 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Yono, M., Yamamoto, Y., Yoshida, M., Ueda, S. & Latifpour, J. Effects of doxazosin on blood flow and mRNA expression of nitric oxide synthase in the spontaneously hypertensive rat genitourinary tract. Life Sci. 81, 218–222 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Morelli, A. et al. Phosphodiesterase type 5 expression in human and rat lower urinary tract tissues and the effect of tadalafil on prostate gland oxygenation in spontaneously hypertensive rats. J. Sex. Med. 8, 2746–2760 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Morelli, A. et al. Acute vardenafil administration improves bladder oxygenation in spontaneously hypertensive rats. J. Sex. Med. 7, 107–120 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Azadzoi, K. M., Babayan, R. K., Kozlowski, R. & Siroky, M. B. Chronic ischemia increases prostatic smooth muscle contraction in the rabbit. J. Urol. 170, 659–663 (2003).

    Article  PubMed  Google Scholar 

  53. Vignozzi, L. et al. Testosterone protects from metabolic syndrome-associated prostate inflammation: an experimental study in rabbit. J. Endocrinol. 212, 71–84 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Morelli, A. et al. Testosterone and farnesoid X receptor agonist INT-747 counteract high fat diet-induced bladder alterations in a rabbit model of metabolic syndrome. J. Steroid Biochem. Mol. Biol. 132, 80–92 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Azadzoi, K. M., Tarcan, T., Kozlowski, R., Krane, R. J. & Siroky, M. B. Overactivity and structural changes in the chronically ischemic bladder. J. Urol. 162, 1768–1778 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Azadzoi, K. M., Heim, V. K., Tarcan, T. & Siroky, M. B. Alteration of urothelial-mediated tone in the ischemic bladder: role of eicosanoids. Neurourol. Urodyn. 23, 258–264 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Azadzoi, K. M., Yalla, S. V. & Siroky, M. B. Oxidative stress and neurodegeneration in the ischemic overactive bladder. J. Urol. 178, 710–715 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Yamaguchi, O., Aikawa, K., Shishido, K. & Nomiya, M. Place of overactive bladder in male lower urinary tract symptoms. World J. Urol. 27, 723–728 (2009).

    Article  PubMed  Google Scholar 

  59. Tarcan, T., Azadzoi, K. M., Siroky, M. B., Goldstein. I. & Krane, R. J. Age-related erectile and voiding dysfunction: the role of arterial insufficiency. Br. J. Urol. 82 (Suppl. 1), 26–33 (1998).

    Article  PubMed  Google Scholar 

  60. Pinggera, G. M. et al. Association of lower urinary tract symptoms and chronic ischaemia of the lower urinary tract in elderly women and men: assessment using colour Doppler ultrasonography. BJU Int. 102, 470–474 (2008).

    Article  PubMed  Google Scholar 

  61. Pinggera, G. M. et al. alpha-Blockers improve chronic ischaemia of the lower urinary tract in patients with lower urinary tract symptoms. BJU Int. 101, 319–324 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Berger, A. P. et al. Vascular damage as a risk factor for benign prostatic hyperplasia and erectile dysfunction. BJU Int. 96, 1073–1078 (2005).

    Article  PubMed  Google Scholar 

  63. Berger, A. P. et al. Vascular resistance in the prostate evaluated by colour Doppler ultrasonography: is benign prostatic hyperplasia a vascular disease? BJU Int. 98, 587–590 (2006).

    Article  PubMed  Google Scholar 

  64. Berger, A. P. et al. Atherosclerosis as a risk factor for benign prostatic hyperplasia. BJU Int. 98, 1038–1042 (2006).

    Article  PubMed  Google Scholar 

  65. Bertolotto, M. et al. Effect of Tadalafil on prostate haemodynamics: preliminary evaluation with contrast-enhanced US. Radiol. Med. 114, 1106–1114 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Azadzoi, K. M., Golabek, T., Radisavljevic, Z. M., Yalla, S. V. & Siroky, M. B. Oxidative stress and neurodegeneration in penile ischaemia. BJU Int. 105, 404–410 (2010).

    Article  PubMed  Google Scholar 

  67. Friedrich, R., Hirche, H., Kebbel, U., Zylka, V. & Bissig, R. Changes of extracellular Na+, K+, Ca2+ and H+ of the ischemic myocardium in pigs. Basic Res. Cardiol. 76, 453–456 (1981).

    Article  CAS  PubMed  Google Scholar 

  68. Azadzoi, K. M., Pontari, M., Vlachiotis, J. & Siroky, M. B. Canine bladder blood flow and oxygenation: changes induced by filling, contraction and outlet obstruction. J. Urol. 155, 1459–1465 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Carmeliet, E. Cardiac ionic currents and acute ischemia: from channels to arrhythmias. Physiol. Rev. 79, 917–1017 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Greenland, J. E. et al. The effect of bladder outlet obstruction on tissue oxygen tension and blood flow in the pig bladder. BJU Int. 85, 1109–1114 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Scheepe, J. R., Amelink, A., de Jong, B. W., Wolffenbuttel, K. P. & Kok, D. J. Changes in bladder wall blood oxygen saturation in the overactive obstructed bladder. J. Urol. 186, 1128–1133 (2011).

    Article  PubMed  Google Scholar 

  72. Pessina, F., McMurray, G., Wiggin, A. & Brading, A. F. The effect of anoxia and glucose-free solutions on the contractile response of guinea-pig detrusor strips to intrinsic nerve stimulation and the application of excitatory agonists. J. Urol. 157, 2375–2380 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Cameron, N. E. & Cotter, M. A. Diabetes causes an early reduction in autonomic ganglion blood flow in rats. J. Diabetes Complications 15, 198–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Thomas, P. J. & Fry, C. H. The effects of cellular hypoxia on contraction and extracellular ion accumulation in isolated human detrusor smooth muscle. J. Urol. 155, 726–731 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Hockey, J. S., Wu, C. & Fry, C. H. The actions of metabolic inhibition on human detrusor smooth muscle contractility from stable and unstable bladders. BJU Int. 86, 531–537 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Levin, R. M. et al. Normal detrusor is more sensitive than hypertrophied detrusor to in vitro ischemia followed by re-oxygenation. Neurourol. Urodyn. 19, 701–712 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Kwon, H. Y., Wein, A. J. & Levin, R. M. Effect of anoxia on the urethral response to phenylephrine. J. Urol. 154, 1527–1531 (1995).

    Article  CAS  PubMed  Google Scholar 

  78. Bratslavsky, G., Kogan, B. & Levin, R. M. Urethra is more sensitive to ischemia than bladder: evidence from an in vitro rat study. J. Urol. 165, 2086–2090 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Kim, N. N. et al. Altered contractility of rabbit penile corpus cavernosum smooth muscle by hypoxia. J. Urol. 155, 772–778 (1996).

    Article  CAS  PubMed  Google Scholar 

  80. Muneer, A. et al. Investigation of cavernosal smooth muscle dysfunction in low flow priapism using an in vitro model. Int. J. Impot. Res. 17, 10–18 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Ghafar, M. A., Puchner, P. J., Anastasiadis, A. G., Cabelin, M. A. & Buttyan, R. Does the prostatic vascular system contribute to the development of benign prostatic hyperplasia? Curr. Urol. Rep. 3, 292–296 (2002).

    Article  PubMed  Google Scholar 

  82. Greenland, J. E. & Brading, A. F. The in vivo and in vitro effects of hypoxia on pig urethral smooth muscle. Br. J. Urol. 79, 525–531 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Vinters, H. V. et al. Neuropathologic substrates of ischemic vascular dementia. J. Neuropathol. Exp. Neurol. 59, 931–945 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Schliebs, R. & Arendt, T. The cholinergic system in aging and neuronal degeneration. Behav. Brain Res. 221, 555–563 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Somlyo, A. P. & Somlyo, A. V. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol. Rev. 83, 1325–1358 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Zhang, X. & DiSanto, M. E. Rho-kinase, a common final path of various contractile bladder and ureter stimuli. Handb. Exp. Pharmacol. 202, 543–568 (2011).

    Article  CAS  Google Scholar 

  87. Cellek, S., Rees, R. W. & Kalsi, J. A Rho-kinase inhibitor, soluble guanylate cyclase activator and nitric oxide-releasing PDE5 inhibitor: novel approaches to erectile dysfunction. Expert Opin. Investig. Drugs 11, 1563–1573 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Turcotte, S., Desrosiers, R. R. & Beliveau, R. Hypoxia upregulates von Hippel-Lindau tumor-suppressor protein through RhoA-dependent activity in renal cell carcinoma. Am. J. Physiol. Renal Physiol. 286, F338–F348 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Hayashi, M. et al. Hypoxia up-regulates hypoxia-inducible factor-1alpha expression through RhoA activation in trophoblast cells. J. Clin. Endocrinol. Metab. 90, 1712–1719 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Zhou, Q. & Liao, J. K. Rho kinase: an important mediator of atherosclerosis and vascular disease. Curr. Pharm. Des. 15, 3108–3115 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rees, R. W. et al. Y-27632, a Rho-kinase inhibitor, inhibits proliferation and adrenergic contraction of prostatic smooth muscle cells. J. Urol. 170, 2517–2522 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Morelli, A. et al. Vardenafil modulates bladder contractility through cGMP-mediated inhibition of RhoA/Rho kinase signaling pathway in spontaneously hypertensive rats. J. Sex. Med. 6, 1594–1608 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Gandaglia, G. et al. The role of chronic prostatic inflammation in the pathogenesis and progression of benign prostatic hyperplasia (BPH). BJU Int. 112, 432–441 (2013).

    Article  PubMed  Google Scholar 

  94. Bostanci, Y., Kazzazi, A., Momtahen, S., Laze, J. & Djavan, B. Correlation between benign prostatic hyperplasia and inflammation. Curr. Opin. Urol. 23, 5–10 (2013).

    Article  PubMed  Google Scholar 

  95. Kramer, G., Mitteregger, D. & Marberger, M. Is benign prostatic hyperplasia (BPH) an immune inflammatory disease? Eur. Urol. 51, 1202–1216 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Abdollah, F. et al. Metabolic syndrome and benign prostatic hyperplasia: evidence of a potential relationship, hypothesized etiology, and prevention. Korean J. Urol. 52, 507–516 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  97. De Nunzio, C., Aronson, W., Freedland, S. J., Giovannucci, E. & Parsons, J. K. The correlation between metabolic syndrome and prostatic diseases. Eur. Urol. 61, 560–570 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Morelli, A. et al. Mechanism of action of phosphodiesterase type 5 inhibition in metabolic syndrome-associated prostate alterations: an experimental study in the rabbit. Prostate 73, 428–441 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Vignozzi, L. et al. PDE5 inhibitors blunt inflammation in human BPH: a potential mechanism of action for PDE5 inhibitors in LUTS. Prostate 73, 1391–1402 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Morgan, B. J. Vascular consequences of intermittent hypoxia. Adv. Exp. Med. Biol. 618, 69–84 (2007).

    Article  PubMed  Google Scholar 

  101. Verdú, E., Ceballos, D., Vilches, J. J. & Navarro, X. Influence of aging on peripheral nerve function and regeneration. J. Peripher. Nerv. Syst. 5, 191–208 (2000).

    Article  PubMed  Google Scholar 

  102. Kihara, M., Nickander, K. K. & Low, P. A. The effect of aging on endoneurial blood flow, hyperemic response and oxygen-free radicals in rat sciatic nerve. Brain Res. 562, 1–5 (1991).

    Article  CAS  PubMed  Google Scholar 

  103. Toda, N. Age-related changes in endothelial function and blood flow regulation. Pharmacol. Ther. 133, 159–176 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Cellek, S., Qu, W., Schmidt, A. M. & Moncada, S. Synergistic action of advanced glycation end products and endogenous nitric oxide leads to neuronal apoptosis in vitro: a new insight into selective nitrergic neuropathy in diabetes. Diabetologia 47, 331–339 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Long, D. A. et al. Loss of nitric oxide and endothelial-derived hyperpolarizing factor-mediated responses in aging. Kidney Int. 68, 2154–2163 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Kihara, M., Zollman, P. J., Schmelzer, J. D. & Low, P. A. The influence of dose of microspheres on nerve blood flow, electrophysiology, and fiber degeneration of rat peripheral nerve. Muscle Nerve 16, 1383–1389 (1993).

    Article  CAS  PubMed  Google Scholar 

  107. Cameron, N. E., Eaton, S. E., Cotter, M. A. & Tesfaye, S. Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy. Diabetologia 44, 1973–1988 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Leo, C. H., Hart, J. L. & Woodman, O. L. Impairment of both nitric oxide-mediated and EDHF-type relaxation in small mesenteric arteries from rats with streptozotocin-induced diabetes. Br. J. Pharmacol. 162, 365–377 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Coppey, L. J., Gellett, J. S. & Yorek, M. A. Mediation of vascular relaxation in epineurial arterioles of the sciatic nerve: effects of diabetes in type 1 and type 2 diabetic rat models. Endothelium 10, 89–94 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Kihara, M. & Low, P. A. Impaired vasoreactivity to nitric oxide in experimental diabetic neuropathy. Exp. Neurol. 132, 180–185 (1995).

    Article  CAS  PubMed  Google Scholar 

  111. El-Remessy, A. B. et al. Peroxynitrite mediates diabetes-induced endothelial dysfunction: possible role of Rho kinase activation. Exp. Diabetes Res. 2010, 247861 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Ali, T. K. et al. Diabetes-induced peroxynitrite impairs the balance of pro-nerve growth factor and nerve growth factor, and causes neurovascular injury. Diabetologia 54, 657–668 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Ibrahim, S. et al. A new minimally invasive technique to show nerve ischaemia in diabetic neuropathy. Diabetologia 42, 737–742 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Fowler, C. J., Griffiths, D. & de Groat, W. C. The neural control of micturition. Nat. Rev. Neurosci. 9, 453–466 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mundy, A. R. in The Scientific Basis of Urology 3rd edn Ch. 14 (eds Mundy, A. R., Fitzpatrick, J. M., Neal, D. E. & George, N. J. R.) 221–243 (Informa Healthcare, 2010).

    Book  Google Scholar 

  116. Griffiths, D. J. in Textbook of the Neurogenic Bladder 2nd edn Ch. 39 (eds Corcos, J. & Schick, E.) (Informa Healthcare, 2008).

    Google Scholar 

  117. Birder, L. et al. in Incontinence 5th edn Ch. 3 (eds Abrams, P., Cardozo, L., Khoury, S. & Wein, A.) 179–260 (European Association of Urology, 2013).

    Google Scholar 

  118. Fry, C. H., Bayliss, M., Young, J. S. & Hussain, M. Influence of age and bladder dysfunction on the contractile properties of isolated human detrusor smooth muscle. BJU Int. 108, E91–E96 (2011).

    Article  PubMed  Google Scholar 

  119. de Groat, W. C. & Yoshimura, N. Afferent nerve regulation of bladder function in health and disease. Handb. Exp. Pharmacol. 194, 91–138 (2009).

    Article  CAS  Google Scholar 

  120. Birder, L. et al. Neural control of the lower urinary tract: peripheral and spinal mechanisms. Neurourol. Urodyn. 29, 128–139 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Roosen, A., Fry, C. H., Sui, G. & Wu, C. Adreno-muscarinic synergy in the bladder trigone: calcium-dependent and -independent mechanisms. Cell Calcium 45, 11–17 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Roosen, A., Blake-James, B. T., Wood, D. & Fry, C. H. Clinical and experimental aspects of adreno-muscarinic synergy in the bladder base and prostate. Neurourol. Urodyn. 28, 938–943 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Fry, C. H. et al. in Incontinence 5th edn Ch. 2 (eds Abrams, P., Cardozo, L., Khoury, S. & Wein, A.) 109–178 (European Association of Urology, 2013).

    Google Scholar 

  124. Kakizaki, H., Fraser, M. O. & De Groat, W. C. Reflex pathways controlling urethral striated and smooth muscle function in the male rat. Am. J. Physiol. 272, R1647–R1656 (1997).

    CAS  PubMed  Google Scholar 

  125. Yamanishi, T., Chapple, C. R., Yasuda, K. & Chess-Williams, R. The role of M2 muscarinic receptor subtypes mediating contraction of the circular and longitudinal smooth muscle of the pig proximal urethra. J. Urol. 168, 308–314 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Ferguson, D. R., Kennedy, I. & Burton, T. J. ATP is released from rabbit urinary bladder epithelial cells by hydrostatic pressure changes—a possible sensory mechanism? J. Physiol. 505, 503–511 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sadananda, P., Shang, F., Liu, L., Mansfield, K. J. & Burcher, E. Release of ATP from rat urinary bladder mucosa: role of acid, vanilloids and stretch. Br. J. Pharmacol. 158, 1655–1662 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yoshida, M. et al. Non-neuronal cholinergic system in human bladder urothelium. Urology 67, 425–430 (2006).

    Article  PubMed  Google Scholar 

  129. Abrams, P. H., Sykes, J. A., Rose, A. J. & Rogers, A. F. The synthesis and release of prostaglandins by human urinary bladder muscle in vitro. Invest. Urol. 16, 346–348 (1979).

    CAS  PubMed  Google Scholar 

  130. Birder, L. A., Apodaca, G., De Groat, W. C. & Kanai, A. J. Adrenergic- and capsaicin-evoked nitric oxide release from urothelium and afferent nerves in urinary bladder. Am. J. Physiol. 275, F226–F229 (1998).

    CAS  PubMed  Google Scholar 

  131. Cockayne, D. A. et al. Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature 407, 1011–1015 (2000).

    Article  CAS  PubMed  Google Scholar 

  132. Young, J. S., Matharu, R., Carew, M. A. & Fry, C. H. Inhibition of stretching-evoked ATP release from bladder mucosa by anticholinergic agents. BJU Int. 110, E397–E401 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Fry, C. H. et al. Modulation of spontaneous activity in the overactive bladder: the role of P2Y agonists. Am. J. Physiol. Renal Physiol. 302, F1447–F1454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yoshida, M., Miyamae, K., Iwashita, H., Otani, M. & Inadome, A. Management of detrusor dysfunction in the elderly: changes in acetylcholine and adenosine triphosphate release during aging. Urology 63 (Suppl. 1), 17–23 (2004).

    Article  PubMed  Google Scholar 

  135. Sun, Y. & Chai, T. C. Augmented extracellular ATP signaling in bladder urothelial cells from patients with interstitial cystitis. Am. J. Physiol. Cell Physiol. 290, C27–C34 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Kumar, V., Chapple, C. R., Surprenant, A. M. & Chess-Williams, R. Enhanced adenosine triphosphate release from the urothelium of patients with painful bladder syndrome: a possible pathophysiological explanation. J. Urol. 178, 1533–1536 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Dean, R. C. & Lue, T. F. Physiology of penile erection and pathophysiology of erectile dysfunction. Urol. Clin. North Am. 32, 379–395 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Awad, A., Alsaid, B., Bessede, T., Droupy, S. & Benoît, G. Evolution in the concept of erection anatomy. Surg. Radiol. Anat. 33, 301–312 (2011).

    Article  PubMed  Google Scholar 

  139. Andersson, K. E. Mechanisms of penile erection and basis for pharmacological treatment of erectile dysfunction. Pharmacol. Rev. 63, 811–859 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Stief, C. G. Central mechanisms of erectile dysfunction: what a clinician may want to know. Int. J. Impot. Res. 15 (Suppl. 2), S3–S6 (2003).

    Article  CAS  PubMed  Google Scholar 

  141. Andersson, K. E. Erectile physiological and pathophysiological pathways involved in erectile dysfunction. J. Urol. 170, S6–S13 (2003).

    Article  PubMed  Google Scholar 

  142. Cellek, S. Nitrergic-noradrenergic interaction in penile erection: a new insight into erectile dysfunction. Drugs Today (Barc.) 36, 135–146 (2000).

    Article  CAS  Google Scholar 

  143. Cellek, S. & Moncada, S. Nitrergic control of peripheral sympathetic responses in the human corpus cavernosum: a comparison with other species. Proc. Natl Acad. Sci. USA 94, 8226–8231 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Macarthur, H., Wilken, G. H., Westfall, T. C. & Kolo, L. L. Neuronal and non-neuronal modulation of sympathetic neurovascular transmission. Acta Physiol. (Oxf.) 203, 37–45 (2011).

    Article  CAS  Google Scholar 

  145. McVary, K. Lower urinary tract symptoms and sexual dysfunction: epidemiology and pathophysiology. BJU Int. 97 (Suppl. 2), 23–28 (2006).

    Article  PubMed  Google Scholar 

  146. Yassin, A. et al. Alpha-adrenoceptors are a common denominator in the pathophysiology of erectile function and BPH/LUTS--implications for clinical practice. Andrologia 38, 1–12 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Fibbi, B. et al. Characterization of phosphodiesterase type 5 expression and functional activity in the human male lower urinary tract. J. Sex. Med. 7, 59–69 (2010).

    Article  CAS  PubMed  Google Scholar 

  148. Rajfer, J., Aronson W. J., Bush, P. A., Dorey, F. J. & Ignarro, L. J. Nitric oxide as a mediator of relaxation of the corpus cavernosum in response to nonadrenergic, noncholinergic neurotransmission. N. Engl. J. Med. 326, 90–94 (1992).

    Article  CAS  PubMed  Google Scholar 

  149. Burnett, A. L. Nitric oxide in the penis—science and therapeutic implications from erectile dysfunction to priapism. J. Sex. Med. 3, 578–582 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Hedlund, P. Nitric oxide/cGMP-mediated effects in the outflow region of the lower urinary tract—is there a basis for pharmacological targeting of cGMP? World J. Urol. 23, 362–367 (2005).

    Article  CAS  PubMed  Google Scholar 

  151. Werkstrom, V., Svensson, A., Andersson, K. E. & Hedlund, P. Phosphodiesterase 5 in the female pig and human urethra: morphological and functional aspects. BJU Int. 98, 414–423 (2006).

    Article  PubMed  CAS  Google Scholar 

  152. Kedia, G. T., Sonnenberg, J. E., Kuczyk, M. A. & Uckert, S. In vitro functional responses of isolated human urethral tissue to phosphodiesterase (PDE) inhibitors. Eur. Urol. Suppl. 10, 291–292 (2011).

    Article  Google Scholar 

  153. Andersson, K. E. & Persson, K. Nitric oxide synthase and the lower urinary tract: possible implications for physiology and pathophysiology. Scand. J. Urol. Nephrol. Suppl. 175, 43–53 (1995).

    CAS  PubMed  Google Scholar 

  154. Giuliano, F. Mechanism of action of PDE5 inhibitors in LUTS and ED: the NO-cGMP pathway. Eur. Urol. 55, 49–51 (2009).

    Article  PubMed  CAS  Google Scholar 

  155. Smet, P. J., Jonavicius, J., Marshall, V. R. & de Vente, J. Distribution of nitric oxide synthase-immunoreactive nerves and identification of the cellular targets of nitric oxide in guinea-pig and human urinary bladder by cGMP immunohistochemistry. Neuroscience 71, 337–348 (1996).

    Article  CAS  PubMed  Google Scholar 

  156. Kedia, G. T., Uckert, S., Jonas, U., Kuczyk, M. A. & Burchardt, M. The nitric oxide pathway in the human prostate: clinical implications in men with lower urinary tract symptoms. World J. Urol. 26, 603–609 (2008).

    Article  CAS  PubMed  Google Scholar 

  157. Oger, S. et al. Signalling pathways involved in sildenafil-induced relaxation of human bladder dome smooth muscle. Br. J. Pharmacol. 160, 1135–1143 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Xin, W., Cheng, Q., Soder, R. P. & Petkov, G. V. Inhibition of phosphodiesterases relaxes detrusor smooth muscle via activation of the large-conductance voltage- and Ca2+-activated K+ channel. Am. J. Physiol. Cell Physiol. 302, C1361–C1370 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Zhang, X. et al. Testosterone regulates smooth muscle contractile pathways in the rat prostate: emphasis on PDE5 signaling. Am. J. Physiol. Endocrinol. Metab. 302, E243–E253 (2012).

    Article  CAS  PubMed  Google Scholar 

  160. Uckert, S. & Kuczyk, M. A. Cyclic nucleotide metabolism including nitric oxide and phosphodiesterase-related targets in the lower urinary tract. Handb. Exp. Pharmacol. 202, 527–542 (2011).

    Article  CAS  Google Scholar 

  161. Uckert, S. et al. Immunohistochemical distribution of cAMP- and cGMP-phosphodiesterase (PDE) isoenzymes in the human prostate. Eur. Urol. 49, 740–745 (2006).

    Article  PubMed  CAS  Google Scholar 

  162. Uckert, S. et al. Effects of phosphodiesterase inhibitors on tension induced by norepinephrine and accumulation of cyclic nucleotides in isolated human prostatic tissue. Urology 71, 526–530 (2008).

    Article  PubMed  Google Scholar 

  163. Uckert, S., Küthe, A., Jonas, U. & Stief, C. G. Characterization and functional relevance of cyclic nucleotide phosphodiesterase isoenzymes of the human prostate. J. Urol. 166, 2484–2490 (2001).

    Article  CAS  PubMed  Google Scholar 

  164. Morelli, A. et al. Androgens regulate phosphodiesterase type 5 expression and functional activity in corpora cavernosa. Endocrinology 145, 2253–2263 (2004).

    Article  CAS  PubMed  Google Scholar 

  165. Filippi, S. et al. Characterization and functional role of androgen-dependent PDE5 activity in the bladder. Endocrinology 148, 1019–1029 (2007).

    Article  CAS  PubMed  Google Scholar 

  166. Lin, C. S., Lau, A., Tu, R. & Lue, T. F. Expression of three isoforms of cGMP-binding cGMP-specific phosphodiesterase (PDE5) in human penile cavernosum. Biochem. Biophys. Res. Commun. 268, 628–635 (2000).

    Article  CAS  PubMed  Google Scholar 

  167. Rahnama'i, M. S. et al. Distribution of phosphodiesterase type 5 (PDE5) in the lateral wall of the guinea pig urinary bladder. BJU Int. 112, 246–257 (2013).

    Article  CAS  PubMed  Google Scholar 

  168. McCloskey, K. D. Interstitial cells in the urinary bladder--localization and function. Neurourol. Urodyn. 29, 82–87 (2010).

    Article  PubMed  Google Scholar 

  169. Moro, C., Leeds, C. & Chess-Williams, R. Contractile activity of the bladder urothelium/lamina propria and its regulation by nitric oxide. Eur. J. Pharmacol. 674, 445–449 (2012).

    Article  CAS  PubMed  Google Scholar 

  170. Lin, C. S. et al. Phosphodiesterase-5 expression and function in the lower urinary tract: a critical review. Urology 81, 480–487 (2013).

    Article  PubMed  Google Scholar 

  171. Oger, S. et al. Combination of alfuzosin and tadalafil exerts an additive relaxant effect on human detrusor and prostatic tissues in vitro. Eur. Urol. 57, 699–707 (2010).

    Article  CAS  PubMed  Google Scholar 

  172. de Groat, W. C. Integrative control of the lower urinary tract: preclinical perspective. Br. J. Pharmacol. 147 (Suppl. 2), S25–S40 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Andersson, K. E. Pharmacology of lower urinary tract smooth muscle cells and penile erectile tissues. Pharmacol. Rev. 45, 253–308 (1993).

    Google Scholar 

  174. Caremel, R., Oger-Roussel, S., Behr-Roussel, D., Grise, P. & Giuliano, F. A. Nitric oxide/cyclic guanosine monophosphate signalling mediates an inhibitory action on sensory pathways of the micturition reflex in the rat. Eur. Urol. 58, 616–625 (2010).

    Article  CAS  PubMed  Google Scholar 

  175. Goldstein, I. et al. Oral sildenafil in the treatment of erectile dysfunction. Sildenafil Study Group. N. Engl. J. Med. 338, 1397–1404 (1998).

    Article  CAS  PubMed  Google Scholar 

  176. Brock, G. B. et al. Efficacy and safety of tadalafil for the treatment of erectile dysfunction: results of integrated analyses. J. Urol. 168, 1332–1336 (2002).

    Article  CAS  PubMed  Google Scholar 

  177. Hellstrom, W. J. et al. Vardenafil for treatment of men with erectile dysfunction: efficacy and safety in a randomized, double-blind, placebo-controlled trial. J. Androl. 23, 763–771 (2002).

    CAS  PubMed  Google Scholar 

  178. Klotz, T., Mathers, M. J., Bloch, W., Nayal, W. & Engelmann, U. Nitric oxide based influence of nitrates on micturition in patients with benign prostatic hyperplasia. Int. Urol. Nephrol. 31, 335–341 (1999).

    Article  CAS  PubMed  Google Scholar 

  179. Roshani, A., Khosropanah, I., Salehi, M. & Kamran, A. N. Effects of isosorbide dinitrate on the urinary flow rate in patients with benign prostatic hyperplasia. Urol. J. 7, 183–187 (2010).

    PubMed  Google Scholar 

  180. Tinel, H., Stelte-Ludwig, B., Hütter, J. & Sandner, P. Pre-clinical evidence for the use of phosphodiesterase-5 inhibitors for treating benign prostatic hyperplasia and lower urinary tract symptoms. BJU Int. 98, 1259–1263 (2006).

    Article  CAS  PubMed  Google Scholar 

  181. Vignozzi, L. et al. Cavernous neurotomy in the rat is associated with the onset of an overt condition of hypogonadism. J. Sex. Med. 6, 1270–1283 (2009).

    Article  CAS  PubMed  Google Scholar 

  182. Vignozzi, L. et al. Effect of sildenafil administration on penile hypoxia induced by cavernous neurotomy in the rat. Int. J. Impot. Res. 20, 60–67 (2008).

    Article  CAS  PubMed  Google Scholar 

  183. Vignozzi, L. et al. Effect of chronic tadalafil administration on penile hypoxia induced by cavernous neurotomy in the rat. J. Sex. Med. 3, 419–431 (2006).

    Article  CAS  PubMed  Google Scholar 

  184. Padma-Nathan, H. et al. Randomized, double-blind, placebo-controlled study of postoperative nightly sildenafil citrate for the prevention of erectile dysfunction after bilateral nerve-sparing radical prostatectomy. Int. J. Impot. Res. 20, 479–486 (2008).

    Article  CAS  PubMed  Google Scholar 

  185. Chung, E. & Brock, G. Sexual rehabilitation and cancer survivorship: a state of art review of current literature and management strategies in male sexual dysfunction among prostate cancer survivors. J. Sex. Med. 10 (Suppl. 1), 102–111 (2013).

    Article  PubMed  Google Scholar 

  186. Gacci, M. et al. A systematic review and meta-analysis on the use of phosphodiesterase 5 inhibitors alone or in combination with α-blockers for lower urinary tract symptoms due to benign prostatic hyperplasia. Eur. Urol. 61, 994–1003 (2012).

    Article  CAS  PubMed  Google Scholar 

  187. Stief, C. G., Porst, H., Neuser, D., Beneke, M. & Ulbrich, E. A randomised, placebo-controlled study to assess the efficacy of twice-daily vardenafil in the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia. Eur. Urol. 53, 1236–1244 (2008).

    Article  CAS  PubMed  Google Scholar 

  188. McVary, K. T. et al. Sildenafil citrate improves erectile function and urinary symptoms in men with erectile dysfunction and lower urinary tract symptoms associated with benign prostatic hyperplasia: a randomized, double-blind trial. J. Urol. 177, 1071–1077 (2007).

    Article  CAS  PubMed  Google Scholar 

  189. McVary, K. T. et al. Tadalafil relieves lower urinary tract symptoms secondary to benign prostatic hyperplasia. J. Urol. 177, 1401–1407 (2007).

    Article  CAS  PubMed  Google Scholar 

  190. Egerdie, R. B. et al. Tadalafil 2.5 or 5 mg administered once daily for 12 weeks in men with both erectile dysfunction and signs and symptoms of benign prostatic hyperplasia: results of a randomized, placebo-controlled, double-blind study. J. Sex. Med. 9, 271–281 (2012).

    Article  CAS  PubMed  Google Scholar 

  191. Oelke, M. et al. Monotherapy with tadalafil or tamsulosin similarly improved lower urinary tract symptoms suggestive of benign prostatic hyperplasia in an international, randomised, parallel, placebo-controlled clinical trial. Eur. Urol. 61, 917–925 (2012).

    Article  CAS  PubMed  Google Scholar 

  192. Donatucci, C. F. et al. Tadalafil administered once daily for lower urinary tract symptoms secondary to benign prostatic hyperplasia: a 1-year, open-label extension study. BJU Int. 107, 1110–1116 (2011).

    Article  PubMed  Google Scholar 

  193. Corbin, J. D. & Francis, S. H. Pharmacology of phosphodiesterase-5 inhibitors. Int. J. Clin. Pract. 56, 453–459 (2002).

    CAS  PubMed  Google Scholar 

  194. Regadas, R. P. et al. Urodynamic effects of the combination of tamsulosin and daily tadalafil in men with lower urinary tract symptoms secondary to benign prostatic hyperplasia: a randomized, placebo-controlled clinical trial. Int. Urol. Nephrol. 45, 39–43 (2013).

    Article  CAS  PubMed  Google Scholar 

  195. Gacci, M. et al. A randomized, placebo-controlled study to assess safety and efficacy of vardenafil 10 mg and tamsulosin 0.4 mg vs. tamsulosin 0.4 mg alone in the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia. J. Sex. Med. 9, 1624–1633 (2012).

    Article  CAS  PubMed  Google Scholar 

  196. Abolyosr, A., Elsagheer, G. A., Abdel-Kader, M. S., Hassan, A. M. & Abou-Zeid, A. M. Evaluation of the effect of sildenafil and/or doxazosin on Benign prostatic hyperplasia-related lower urinary tract symptoms and erectile dysfunction. Urol. Ann. 5, 237–240 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Kaplan, S. A. Tadalafil for the treatment of benign prostatic hyperplasia: when the moment does not add up. Eur. Urol. 63, 517–518 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Janet Douglas for editorial assistance with the preparation of this article.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, discussed content, and contributed to writing the article and reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Selim Cellek.

Ethics declarations

Competing interests

S.C. and C.F. declare that they are consultants for Eli Lilly and Company. S.C. declares that he is a shareholder and has a family member who is an employee of GlaxoSmithKline. C.F. declares that he has received honoraria for speaking from Pfizer, and research grant support from Boston Scientific and Takeda Pharmaceutical. D.I. declares that he is an employee and shareholder of Eli Lilly and Company. N.C. and M.C. declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cellek, S., Cameron, N., Cotter, M. et al. Microvascular dysfunction and efficacy of PDE5 inhibitors in BPH–LUTS. Nat Rev Urol 11, 231–241 (2014). https://doi.org/10.1038/nrurol.2014.53

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2014.53

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing