Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Autophagy as a modulator and target in prostate cancer

Subjects

Key Points

  • Autophagy is a dynamic metabolic process that facilitates nutrient utilization and toxin removal: too little or too much autophagy can have beneficial or deleterious effects depending on the context

  • Understanding the context-dependent role of autophagy in cancer development, and specifically in treatment resistance, has the potential to improve current treatment of advanced prostate cancer

  • Preclinical prostate cancer models show significant upregulation of autophagy in response to androgen deprivation therapy, taxane-based chemotherapy, targeted inhibition of kinases, and amino acid restriction

  • Adjuvant autophagy inhibition in preclinical prostate cancer models improves cell killing and tumour responsiveness to treatment

  • Several autophagic modulators are under active investigation in clinical trials, including chloroquine and hydroxychloroquine

  • Currently available autophagy modulators are relatively nonspecific, and cytotoxicity in noncancerous tissues is a concern: moving forward, refinement of autophagy modulation is needed

Abstract

Autophagy, or 'self-eating', is an adaptive process that enables cells to cope with metabolic, toxic, and even infectious stressors. Although the adaptive capability of autophagy is generally considered beneficial, autophagy can also enhance nutrient utilization and improve growth characteristics of cancer cells. Moreover, autophagy can promote greater cellular robustness in the context of therapeutic intervention. In advanced prostate cancer, preclinical data provide evidence that autophagy facilitates both disease progression and therapeutic resistance. Notably, androgen deprivation therapy, taxane-based chemotherapy, targeted kinase inhibition, and nutrient restriction all induce significant cellular distress and, subsequently, autophagy. Understanding the context-dependent role of autophagy in cancer development and treatment resistance has the potential to improve current treatment of advanced prostate cancer. Indeed, preclinical studies have shown that the pharmacological inhibition of autophagy (with agents including chloroquine, hydroxychloroquine, metformin, and desmethylclomipramine) can enhance the cell-killing effect of cancer therapeutics, and a number of these agents are currently under investigation in clinical trials. However, many of these autophagy modulators are relatively nonspecific, and cytotoxicity in noncancerous tissues is still a concern. Moving forward, refinement of autophagy modulation is needed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Initiation and mechanisms of autophagy.
Figure 2: Prostate cancer treatments and autophagy.
Figure 3: Src kinase, autophagy and prostate cancer.
Figure 4: Amino acid deprivation, autophagy and prostate cancer.

Similar content being viewed by others

References

  1. Bennett, H. L. et al. Does androgen-ablation therapy (AAT) associated autophagy have a pro-survival effect in LNCaP human prostate cancer cells? BJU Int. 111, 672–682 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xie, Z. & Klionsky, D. J. Autophagosome formation: core machinery and adaptations. Nat. Cell Biol. 9, 1102–1109 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Degenhardt, K. et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10, 51–64 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Leone, R. D. & Amaravadi, R. K. Autophagy: a targetable linchpin of cancer cell metabolism. Trends Endocrinol. Metab. 24, 209–217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen, N. & Karantza, V. Autophagy as a therapeutic target in cancer. Cancer Biol. Ther. 11, 157–168 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chodak, G. W. & Warren, K. S. Watchful waiting for prostate cancer: a review article. Prostate Cancer Prostatic Dis. 9, 25–29 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Patel, A. R. & Klein, E. A. Risk factors for prostate cancer. Nat. Clin. Pract. Urol. 6, 87–95 (2009).

    Article  PubMed  Google Scholar 

  9. Cheong, H., Lu, C., Lindsten, T. & Thompson, C. B. Therapeutic targets in cancer cell metabolism and autophagy. Nat. Biotechnol. 30, 671–678 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Deretic, V. Autophagosome and phagosome. Methods Mol. Biol. 445, 1–10 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Townsend, K. N. et al. Autophagy inhibition in cancer therapy: metabolic considerations for antitumor immunity. Immunol. Rev. 249, 176–194 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Deretic, V. Autophagy: an emerging immunological paradigm. J. Immunol. 189, 15–20 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Levine, B., Mizushima, N. & Virgin, H. W. Autophagy in immunity and inflammation. Nature 469, 323–335 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, Y., Morgan, M. J., Chen, K., Choksi, S. & Liu, Z. G. Induction of autophagy is essential for monocyte-macrophage differentiation. Blood 119, 2895–2905 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Choi, A. M., Ryter, S. W. & Levine, B. Autophagy in human health and disease. N. Engl. J. Med. 368, 1845–1846 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8, 445–544 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Qu, X. et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest. 112, 1809–1820 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mathew, R., Karantza-Wadsworth, V. & White, E. Role of autophagy in cancer. Nat. Rev. Cancer 7, 961–967 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. White, E. Deconvoluting the context-dependent role for autophagy in cancer. Nat. Rev. Cancer 12, 401–410 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lum, J. J. et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120, 237–248 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Yonekawa, T. & Thorburn, A. Autophagy and cell death. Essays Biochem. 55, 105–117 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mariño, G., Niso-Santano, M., Baehrecke, E. H. & Kroemer, G. Self-consumption: the interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 15, 81–94 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Levine, B. & Yuan, J. Autophagy in cell death: an innocent convict? J. Clin. Invest. 115, 2679–2688 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mehrpour, M., Esclatine, A., Beau, I. & Codogno, P. Overview of macroautophagy regulation in mammalian cells. Cell Res. 20, 748–762 (2010).

    Article  PubMed  Google Scholar 

  25. Pattingre, S. et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122, 927–939 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Kondo, Y., Kanzawa, T., Sawaya, R. & Kondo, S. The role of autophagy in cancer development and response to therapy. Nat. Rev. Cancer 5, 726–734 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Yang, Z. J., Chee, C. E., Huang, S. & Sinicrope, F. Autophagy modulation for cancer therapy. Cancer Biol. Ther. 11, 169–176 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Carew, J. S. et al. Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood 110, 313–322 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Katayama, M., Kawaguchi, T., Berger, M. S. & Pieper, R. O. DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ. 14, 548–558 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. White, E. & DiPaola, R. S. The double-edged sword of autophagy modulation in cancer. Clin. Cancer Res. 15, 5308–5316 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Amaravadi, R. K. et al. Principles and current strategies for targeting autophagy for cancer treatment. Clin. Cancer Res. 17, 654–666 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang, Z. J., Chee, C. E., Huang, S. & Sinicrope, F. A. The role of autophagy in cancer: therapeutic implications. Mol. Cancer Ther. 10, 1533–1541 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sotelo, J., Briceño, E. & López-González, M. A. Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial. Ann. Intern. Med. 144, 337–343 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Vakana, E., Altman, J. K. & Platanias, L. C. Targeting AMPK in the treatment of malignancies. J. Cell. Biochem. 113, 404–409 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Ben Sahra, I. et al. Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer Res. 70, 2465–2475 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Ben Sahra, I. et al. The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene 27, 3576–3586 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Cantrell, L. A. et al. Metformin is a potent inhibitor of endometrial cancer cell proliferation—implications for a novel treatment strategy. Gynecol. Oncol. 116, 92–98 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Cazzaniga, M., Bonanni, B., Guerrieri-Gonzaga, A. & Decensi, A. Is it time to test metformin in breast cancer clinical trials? Cancer Epidemiol. Biomarkers Prev. 18, 701–705 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Colquhoun, A. J. et al. Metformin enhances the antiproliferative and apoptotic effect of bicalutamide in prostate cancer. Prostate Cancer Prostatic Dis. 15, 346–352 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Zakikhani, M., Dowling, R., Fantus, I. G., Sonenberg, N. & Pollak, M. Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res. 66, 10269–10273 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Shank, J. J. et al. Metformin targets ovarian cancer stem cells in vitro and in vivo. Gynecol. Oncol. 127, 390–397 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, Y. et al. Effects of metformin on CD133+ colorectal cancer cells in diabetic patients. PLoS ONE 8, e81264 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Evans, J. M., Donnelly, L. A., Emslie-Smith, A. M., Alessi, D. R. & Morris, A. D. Metformin and reduced risk of cancer in diabetic patients. BMJ 330, 1304–1305 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Spratt, D. E. et al. Metformin and prostate cancer: reduced development of castration-resistant disease and prostate cancer mortality. Eur. Urol. 63, 709–716 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Rossi, M. et al. Desmethylclomipramine induces the accumulation of autophagy markers by blocking autophagic flux. J. Cell Sci. 122, 3330–3339 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nguyen, H. G. et al. Targeting autophagy overcomes Enzalutamide resistance in castration-resistant prostate cancer cells and improves therapeutic response in a xenograft model. Oncogene http://dx.doi.org/10.1038/onc.2014.25.

  47. Kung, H.-J. et al. in Prostate Cancer, (ed. Tindall, D. J.) 497–518 (Springer, 2013).

    Book  Google Scholar 

  48. Shen, S. et al. Association and dissociation of autophagy, apoptosis and necrosis by systematic chemical study. Oncogene 30, 4544–4556 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Giampietri, C. et al. Autophagy modulators sensitize prostate epithelial cancer cell lines to TNF-alpha-dependent apoptosis. Apoptosis 17, 1210–1222 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Bennett, H. L., Fleming, J. T., O'Prey, J., Ryan, K. M. & Leung, H. Y. Androgens modulate autophagy and cell death via regulation of the endoplasmic reticulum chaperone glucose-regulated protein 78/BiP in prostate cancer cells. Cell Death Dis. 1, e72 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kaini, R. R. & Hu, C. A. Synergistic killing effect of chloroquine and androgen deprivation in LNCaP cells. Biochem. Biophys. Res. Commun. 425, 150–156 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Li, M. et al. Autophagy protects LNCaP cells under androgen deprivation conditions. Autophagy 4, 54–60 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Jiang, Q. et al. Targeting androgen receptor leads to suppression of prostate cancer via induction of autophagy. J. Urol. 188, 1361–1368 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Xu, Y., Chen, S. Y., Ross, K. N. & Balk, S. P. Androgens induce prostate cancer cell proliferation through mammalian target of rapamycin activation and post-transcriptional increases in cyclin D proteins. Cancer Res. 66, 7783–7792 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Chhipa, R. R., Wu, Y. & Ip, C. AMPK-mediated autophagy is a survival mechanism in androgen-dependent prostate cancer cells subjected to androgen deprivation and hypoxia. Cell. Signal. 23, 1466–1472 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lozy, F. & Karantza, V. Autophagy and cancer cell metabolism. Semin. Cell Dev. Biol. 23, 395–401 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ziparo, E. et al. Autophagy in prostate cancer and androgen suppression therapy. Int. J. Mol. Sci. 14, 12090–12106 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Barrett, K. E., Boitano, S., Barman, S. M. & Brooks, H. L. Ganong's Review of Medical Physiology 23rd edn Ch. 2 (McGraw-Hill, 2012).

    Google Scholar 

  59. Tannock, I. F. et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N. Engl. J. Med. 351, 1502–1512 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Köchl, R., Hu, X. W., Chan, E. Y. & Tooze, S. A. Microtubules facilitate autophagosome formation and fusion of autophagosomes with endosomes. Traffic 7, 129–145 (2006).

    Article  PubMed  Google Scholar 

  61. Viola, G. et al. MG-2477, a new tubulin inhibitor, induces autophagy through inhibition of the Akt/mTOR pathway and delayed apoptosis in A549 cells. Biochem. Pharmacol. 83, 16–26 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Veldhoen, R. A. et al. The chemotherapeutic agent paclitaxel inhibits autophagy through two distinct mechanisms that regulate apoptosis. Oncogene 32, 736–746 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Notte, A., Ninane, N., Arnould, T. & Michiels, C. Hypoxia counteracts taxol-induced apoptosis in MDA-MB-231 breast cancer cells: role of autophagy and JNK activation. Cell Death Dis. 4, e638 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Long, B. H. & Fairchild, C. R. Paclitaxel inhibits progression of mitotic cells to G1 phase by interference with spindle formation without affecting other microtubule functions during anaphase and telophase. Cancer Res. 54, 4355–4361 (1994).

    CAS  PubMed  Google Scholar 

  65. Eum, K. H. & Lee, M. Crosstalk between autophagy and apoptosis in the regulation of paclitaxel-induced cell death in v-Ha-ras-transformed fibroblasts. Mol. Cell. Biochem. 348, 61–68 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Yeatman, T. J. A renaissance for SRC. Nat. Rev. Cancer 4, 470–480 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Kung, H. J. Targeting tyrosine kinases and autophagy in prostate cancer. Horm. Cancer 2, 38–46 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Lee, Y. C. et al. Src family kinase/abl inhibitor dasatinib suppresses proliferation and enhances differentiation of osteoblasts. Oncogene 29, 3196–3207 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wu, Z. et al. Autophagy blockade sensitizes prostate cancer cells towards Src family kinase inhibitors. Genes Cancer 1, 40–49 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lamoureux, F. et al. Blocked autophagy using lysosomotropic agents sensitizes resistant prostate tumor cells to the novel Akt inhibitor AZD5363. Clin. Cancer Res. 19, 833–844 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. DaSilva, J., Gioeli, D., Weber, M. J. & Parsons, S. J. The neuroendocrine-derived peptide parathyroid hormone-related protein promotes prostate cancer cell growth by stabilizing the androgen receptor. Cancer Res. 69, 7402–7411 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lee, L. F., Guan, J., Qiu, Y. & Kung, H. J. Neuropeptide-induced androgen independence in prostate cancer cells: roles of nonreceptor tyrosine kinases Etk/Bmx, Src, and focal adhesion kinase. Mol. Cell. Biol. 21, 8385–8397 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee, L. F. et al. Interleukin-8 confers androgen-independent growth and migration of LNCaP: differential effects of tyrosine kinases Src and FAK. Oncogene 23, 2197–2205 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Yang, J. C. et al. Aberrant activation of androgen receptor in a new neuropeptide-autocrine model of androgen-insensitive prostate cancer. Cancer Res. 69, 151–160 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kim, R. H., Bold, R. J. & Kung, H. J. ADI, autophagy and apoptosis: metabolic stress as a therapeutic option for prostate cancer. Autophagy 5, 567–568 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work is supported by funding from the following sources: the Department of Defense, the Stand Up To Cancer Prostate Cancer Foundation Prostate Dream Team Translational Cancer Research grant, made possible by the generous support of the Movember Foundation (Stand Up To Cancer is a programme of the Entertainment Industry Foundation administered by the American Association of Cancer Research), and the National Center for Advancing Translational Sciences at the National Institutes of Health, through grant number UL1 TR000002 and the linked TL1 TR000133 award.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, and contributed to discussions of content, and review and editing of the manuscript before submission. J.M.F. wrote the article.

Corresponding author

Correspondence to Christopher P. Evans.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farrow, J., Yang, J. & Evans, C. Autophagy as a modulator and target in prostate cancer. Nat Rev Urol 11, 508–516 (2014). https://doi.org/10.1038/nrurol.2014.196

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2014.196

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing