Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Proteoglycans in prostate cancer

Abstract

The complexity and diversity of proteoglycan structure means that they have a range of functions that regulate cell behavior. Through multiple interactions of their core proteins and glycosaminoglycans with extracellular matrix proteins, growth factors and chemokines, proteoglycans affect cell signaling, motility, adhesion, growth and apoptosis. Progressive changes in proteoglycans occur in the tumor microenvironment, but neither the source nor consequences of those changes are well understood. Proteoglycans studied in prostate cancer include versican—a hyalectan regulator of cell adhesion and migration—and the small leucine-rich proteoglycans decorin, biglycan and lumican, which have roles in cell signaling and tissue organization. Studies support an inhibitory role in prostate cancer for decorin and lumican. Conversely, the basement membrane proteoglycan perlecan might be a tumor promoter through upregulation of sonic hedgehog signaling. Loss of the growth-inhibitory cell-surface proteoglycans syndecan-1 and betaglycan in early prostate cancer might facilitate progression, but syndecan-1 effects are pleiotropic and its renewed expression in advanced tumors might adversely affect outcome. Importantly, cellular changes and enzymatic activity in the developing tumor can alter proteoglycan composition and structure to modify their function. Emerging studies suggest that cancers, including those of the prostate, use these changes to promote their own survival, growth, and spread.

Key Points

  • Proteoglycans are a family of complex macromolecules whose structure comprises a unique core protein substituted with structurally diverse carbohydrate chains termed glycosaminoglycans

  • Both core proteins and glycosaminoglycans participate in interactions with other extracellular matrix proteins, growth factors and chemokines to regulate cell functions

  • Individual proteoglycan species might have opposing roles in regulating cell growth, adhesion, migration and apoptosis

  • The proteoglycan composition of a tissue is the sum of synthetic and degradative activities of multiple cell types and will change in the unstable microenvironment of a developing tumor

  • Proteoglycan fine structure, particularly pattern of glycosaminoglycan sulfation is important in mediating their function; degradative enzymes in a developing tumor might modify that structure and thus alter function

  • In prostate cancer, versican and perlecan promote tumor progression, whereas decorin and betaglycan are tumor suppressors; syndecan-1 might have a dual role as an antagonist and agonist depending on disease stage and enzymatic conditions

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proteoglycan groups based on the sites with which they associate.
Figure 2: Structural relationship of the four isoforms of versican.
Figure 3: Structural organization of the small leucine-rich proteoglycans.
Figure 4: Structural organization of perlecan.
Figure 5: Structural organization of syndecan-1.

Similar content being viewed by others

References

  1. Theocharis, A. D., Skandalis, S. S., Tzanakakis, G. N. & Karamanos, N. K. Proteoglycans in health and disease: novel roles for proteoglycans in malignancy and their pharmacological targeting. FEBS J. 277, 3904–3923 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Iozzo, R. V. & Schaefer, L. Proteoglycans in health and disease: novel regulatory signaling mechanisms evoked by the small leucine-rich proteoglycans. FEBS J. 277, 3864–3875 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Manon-Jensen, T., Itoh, Y. & Couchman, J. R. Proteoglycans in health and disease: the multiple roles of syndecan shedding. FEBS J. 277, 3876–3889 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Friedl, A. Proteoglycans: master modulators of paracrine fibroblast-carcinoma cell interactions. Semin. Cell Dev. Biol. 21, 66–71 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Kjellen, L. & Lindahl, U. Proteoglycans: structures and interactions. Annu. Rev. Biochem. 60, 443–475 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Lindahl, U., Kusche-Gullberg, M. & Kjellen, L. Regulated diversity of heparan sulfate. J. Biol. Chem. 273, 24979–24982 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Esko, J. D. & Lindahl, U. Molecular diversity of heparan sulfate. J. Clin. Invest. 108, 169–173 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gallagher, J. T. Heparan sulfate: growth control with a restricted sequence menu. J. Clin. Invest. 108, 357–361 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Iozzo, R. V. Matrix proteoglycans: from molecular design to cellular function. Annu. Rev. Biochem. 67, 609–652 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Bernfield, M. et al. Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 68, 729–777 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Thomson, A. A. & Cunha, G. R. Prostatic growth and development are regulated by FGF10. Development 126, 3693–3701 (1999).

    CAS  PubMed  Google Scholar 

  12. Mohammadi, M., Olsen, S. K. & Ibrahimi, O. A. Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev. 16, 107–137 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Buresh, R. A. et al. Sulfatase 1 is an inhibitor of ductal morphogenesis with sexually dimorphic expression in the urogenital sinus. Endocrinology 151, 3420–3431 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Podlasek, C. A., Barnett, D. H., Clemens, J. Q., Bak, P. M. & Bushman, W. Prostate development requires Sonic hedgehog expressed by the urogenital sinus epithelium. Dev. Biol. 209, 28–39 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Datta, S., Pierce, M. & Datta, M. W. Perlecan signaling: helping hedgehog stimulate prostate cancer growth. Int. J. Biochem. Cell Biol. 38, 1855–1861 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Sakko, A. J. et al. Changes in steroid receptors and proteoglycan expression in the guinea pig prostate stroma during puberty and hormone manipulation. Prostate 67, 288–300 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Kolset, S. O. & Tveit, H. Serglycin--structure and biology. Cell. Mol. Life Sci. 65, 1073–1085 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Niemann, C. U., Kjeldsen, L., Ralfkiaer, E., Jensen, M. K. & Borregaard, N. Serglycin proteoglycan in hematologic malignancies: a marker of acute myeloid leukemia. Leukemia 21, 2406–2410 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Meen, A. J. et al. Serglycin is a major proteoglycan in polarized human endothelial cells and is implicated in the secretion of the chemokine GROalpha/CXCL1. J. Biol. Chem. 286, 2636–2647 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Li, X. J. et al. Serglycin is a theranostic target in nasopharyngeal carcinoma that promotes metastasis. Cancer Res. 71, 3162–3172 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Theocharis, A. D. et al. Serglycin constitutively secreted by myeloma plasma cells is a potent inhibitor of bone mineralization in vitro. J. Biol. Chem. 281, 35116–35128 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Cohen, R. J., Holland, J. W., Redmond, S. L., McNeal, J. E. & Dawkins, H. J. Identification of the glycosaminoglycan keratan sulfate in the prostatic secretory cell. Prostate 44, 204–209 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Holland, J. W., Meehan, K. L., Redmond, S. L. & Dawkins, H. J. Purification of the keratan sulfate proteoglycan expressed in prostatic secretory cells and its identification as lumican. Prostate 59, 252–259 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Ricciardelli, C., Sakko, A. J., Ween, M. P., Russell, D. L. & Horsfall, D. J. The biological role and regulation of versican levels in cancer. Cancer Metastasis Rev. 28, 233–245 (2009).

    Article  PubMed  Google Scholar 

  25. Wight, T. N. Versican: a versatile extracellular matrix proteoglycan in cell biology. Curr. Opin. Cell Biol. 14, 617–623 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Wu, Y. J., La Pierre, D. P., Wu, J., Yee, A. J. & Yang, B. B. The interaction of versican with its binding partners. Cell Res. 15, 483–494 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Hirose, J., Kawashima, H., Yoshie, O., Tashiro, K. & Miyasaka, M. Versican interacts with chemokines and modulates cellular responses. J. Biol. Chem. 276, 5228–5234 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Dours-Zimmermann, M. T. & Zimmermann, D. R. A novel glycosaminoglycan attachment domain identified in two alternative splice variants of human versican. J. Biol. Chem. 269, 32992–32998 (1994).

    CAS  PubMed  Google Scholar 

  29. Sakko, A. J. et al. Modulation of prostate cancer cell attachment to matrix by versican. Cancer Res. 63, 4786–4791 (2003).

    CAS  PubMed  Google Scholar 

  30. Ricciardelli, C. et al. Elevated levels of versican but not decorin predict disease progression in early-stage prostate cancer. Clin. Cancer Res. 4, 963–971 (1998).

    CAS  PubMed  Google Scholar 

  31. Ricciardelli, C. et al. Formation of hyaluronan- and versican-rich pericellular matrix by prostate cancer cells promotes cell motility. J. Biol. Chem. 282, 10814–10825 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Read, J. T. et al. Androgen receptor regulation of the versican gene through an androgen response element in the proximal promoter. J. Biol. Chem. 282, 31954–31963 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Sakko, A. J. et al. Versican accumulation in human prostatic fibroblast cultures is enhanced by prostate cancer cell-derived transforming growth factor beta1. Cancer Res. 61, 926–930 (2001).

    CAS  PubMed  Google Scholar 

  34. Cross, N. A. et al. The expression and regulation of ADAMTS-1, -4, -5, -9, and -15, and TIMP-3 by TGFbeta1 in prostate cells: relevance to the accumulation of versican. Prostate 63, 269–275 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Sandy, J. D. et al. Versican V1 proteolysis in human aorta in vivo occurs at the Glu441-Ala442 bond, a site that is cleaved by recombinant ADAMTS-1 and ADAMTS-4. J. Biol. Chem. 276, 13372–13378 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Somerville, R. P. et al. Characterization of ADAMTS-9 and ADAMTS-20 as a distinct ADAMTS subfamily related to Caenorhabditis elegans GON-1. J. Biol. Chem. 278, 9503–9513 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Schaefer, L. & Iozzo, R. V. Biological functions of the small leucine-rich proteoglycans: from genetics to signal transduction. J. Biol. Chem. 283, 21305–21309 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Scott, P. G. et al. Crystal structure of the dimeric protein core of decorin, the archetypal small leucine-rich repeat proteoglycan. Proc. Natl Acad. Sci. USA 101, 15633–15638 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schaefer, L. & Schaefer, R. M. Proteoglycans: from structural compounds to signaling molecules. Cell Tissue Res. 339, 237–246 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Weber, I. T., Harrison, R. W. & Iozzo, R. V. Model structure of decorin and implications for collagen fibrillogenesis. J. Biol. Chem. 271, 31767–31770 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Neame, P. J., Kay, C. J., McQuillan, D. J., Beales, M. P. & Hassell, J. R. Independent modulation of collagen fibrillogenesis by decorin and lumican. Cell. Mol. Life Sci. 57, 859–863 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Svensson, L. et al. Fibromodulin-null mice have abnormal collagen fibrils, tissue organization, and altered lumican deposition in tendon. J. Biol. Chem. 274, 9636–9647 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Yamaguchi, Y., Mann, D. M. & Ruoslahti, E. Negative regulation of transforming growth factor-beta by the proteoglycan decorin. Nature 346, 281–284 (1990).

    Article  CAS  PubMed  Google Scholar 

  44. Moscatello, D. K. et al. Decorin suppresses tumor cell growth by activating the epidermal growth factor receptor. J. Clin. Invest. 101, 406–412 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Iozzo, R. V., Moscatello, D. K., McQuillan, D. J. & Eichstetter, I. Decorin is a biological ligand for the epidermal growth factor receptor. J. Biol. Chem. 274, 4489–4492 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Santra, M., Eichstetter, I. & Iozzo, R. V. An anti-oncogenic role for decorin. Downregulation of ErbB2 leads to growth suppression and cytodifferentiation of mammary carcinoma cells. J. Biol. Chem. 275, 35153–35161 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Csordas, G. et al. Sustained downregulation of the epidermal growth factor receptor by decorin. A mechanism for controlling tumor growth in vivo. J. Biol. Chem. 275, 32879–32887 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Goldoni, S. et al. Decorin is a novel antagonistic ligand of the Met receptor. J. Cell Biol. 185, 743–754 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schonherr, E., Sunderkotter, C., Iozzo, R. V. & Schaefer, L. Decorin, a novel player in the insulin-like growth factor system. J. Biol. Chem. 280, 15767–15772 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Mauviel, A., Santra, M., Chen, Y. Q., Uitto, J. & Iozzo, R. V. Transcriptional regulation of decorin gene expression. Induction by quiescence and repression by tumor necrosis factor-alpha. J. Biol. Chem. 270, 11692–11700 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Santra, M. et al. Ectopic expression of decorin protein core causes a generalized growth suppression in neoplastic cells of various histogenetic origin and requires endogenous p21, an inhibitor of cyclin-dependent kinases. J. Clin. Invest. 100, 149–157 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Reed, C. C., Gauldie, J. & Iozzo, R. V. Suppression of tumorigenicity by adenovirus-mediated gene transfer of decorin. Oncogene 21, 3688–3695 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Reed, C. C. et al. Decorin prevents metastatic spreading of breast cancer. Oncogene 24, 1104–1110 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Biglari, A. et al. Effects of ectopic decorin in modulating intracranial glioma progression in vivo, in a rat syngeneic model. Cancer Gene Ther. 11, 721–732 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tralhao, J. G. et al. In vivo selective and distant killing of cancer cells using adenovirus-mediated decorin gene transfer. FASEB J. 17, 464–466 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Banerjee, A. G. et al. Expression of biomarkers modulating prostate cancer angiogenesis: differential expression of annexin II in prostate carcinomas from India and USA. Mol. Cancer 2, 34 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Coulson-Thomas, V. J. et al. Fibroblast and prostate tumor cell cross-talk: fibroblast differentiation, TGF-beta, and extracellular matrix downregulation. Exp. Cell Res. 316, 3207–3226 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Wang, S. et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 4, 209–221 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Hu, Y. et al. Decorin suppresses prostate tumor growth through inhibition of epidermal growth factor and androgen receptor pathways. Neoplasia 11, 1042–1053 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mimeault, M. & Batra, S. K. Recent advances on multiple tumorigenic cascades involved in prostatic cancer progression and targeting therapies. Carcinogenesis 27, 1–22 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Fassan, M. et al. Mitostatin is downregulated in human prostate cancer and suppresses the invasive phenotype of prostate cancer cells. PLoS ONE 6, e19771 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vecchione, A. et al. MITOSTATIN, a putative tumor suppressor on chromosome 12q24.1, is downregulated in human bladder and breast cancer. Oncogene 28, 257–269 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Chen, N. et al. A secreted isoform of ErbB3 promotes osteonectin expression in bone and enhances the invasiveness of prostate cancer cells. Cancer Res. 67, 6544–6548 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen, X. D., Fisher, L. W., Robey, P. G. & Young, M. F. The small leucine-rich proteoglycan biglycan modulates BMP-4-induced osteoblast differentiation. FASEB J. 18, 948–958 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Wang, J., Levenson, A. S. & Satcher, R. L. Jr. Identification of a unique set of genes altered during cell-cell contact in an in vitro model of prostate cancer bone metastasis. Int. J. Mol. Med. 17, 849–856 (2006).

    CAS  PubMed  Google Scholar 

  66. Chakravarti, S. et al. Lumican regulates collagen fibril assembly: skin fragility and corneal opacity in the absence of lumican. J. Cell Biol. 141, 1277–1286 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kao, W. W. & Liu, C. Y. Roles of lumican and keratocan on corneal transparency. Glycoconj. J. 19, 275–285 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Leygue, E. et al. Expression of lumican in human breast carcinoma. Cancer Res. 58, 1348–1352 (1998).

    CAS  PubMed  Google Scholar 

  69. Matsuda, Y. et al. Expression and roles of lumican in lung adenocarcinoma and squamous cell carcinoma. Int. J. Oncol. 33, 1177–1185 (2008).

    CAS  PubMed  Google Scholar 

  70. Ishiwata, T. et al. Role of lumican in cancer cells and adjacent stromal tissues in human pancreatic cancer. Oncol. Rep. 18, 537–543 (2007).

    CAS  PubMed  Google Scholar 

  71. Brezillon, S. et al. Expression of lumican, a small leucine-rich proteoglycan with antitumor activity, in human malignant melanoma. Clin. Exp. Dermatol. 32, 405–416 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. D'Onofrio, M. F. et al. Identification of beta1 integrin as mediator of melanoma cell adhesion to lumican. Biochem. Biophys. Res. Commun. 365, 266–272 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Brezillon, S. et al. Lumican inhibits B16F1 melanoma cell lung metastasis. J. Physiol. Pharmacol. 60 (Suppl. 4), 15–22 (2009).

    PubMed  Google Scholar 

  74. Vij, N., Roberts, L., Joyce, S. & Chakravarti, S. Lumican suppresses cell proliferation and aids Fas-Fas ligand mediated apoptosis: implications in the cornea. Exp. Eye Res. 78, 957–971 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Lee, S., Bowrin, K., Hamad, A. R. & Chakravarti, S. Extracellular matrix lumican deposited on the surface of neutrophils promotes migration by binding to beta2 integrin. J. Biol. Chem. 284, 23662–23669 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Leygue, E. et al. Lumican and decorin are differentially expressed in human breast carcinoma. J. Pathol. 192, 313–320 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Luo, J. et al. Gene expression signature of benign prostatic hyperplasia revealed by cDNA microarray analysis. Prostate 51, 189–200 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Iozzo, R. V., Zoeller, J. J. & Nystrom, A. Basement membrane proteoglycans: modulators Par Excellence of cancer growth and angiogenesis. Mol. Cells 27, 503–513 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Iozzo, R. V. & San Antonio, J. D. Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J. Clin. Invest. 108, 349–355 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Murdoch, A. D., Liu, B., Schwarting, R., Tuan, R. S. & Iozzo, R. V. Widespread expression of perlecan proteoglycan in basement membranes and extracellular matrices of human tissues as detected by a novel monoclonal antibody against domain III and by in situ hybridization. J. Histochem. Cytochem. 42, 239–249 (1994).

    Article  CAS  PubMed  Google Scholar 

  81. Iozzo, R. V., Cohen, I. R., Grassel, S. & Murdoch, A. D. The biology of perlecan: the multifaceted heparan sulfate proteoglycan of basement membranes and pericellular matrices. Biochem. J. 302 (Pt 3), 625–639 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Savore, C. et al. Perlecan knockdown in metastatic prostate cancer cells reduces heparin-binding growth factor responses in vitro and tumor growth in vivo. Clin. Exp. Metastasis 22, 377–390 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Datta, M. W. et al. Perlecan, a candidate gene for the CAPB locus, regulates prostate cancer cell growth via the Sonic Hedgehog pathway. Mol. Cancer 5, 9 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Karhadkar, S. S. et al. Hedgehog signaling in prostate regeneration, neoplasia and metastasis. Nature 431, 707–712 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Gatza, C. E., Oh, S. Y. & Blobe, G. C. Roles for the type III TGF-beta receptor in human cancer. Cell Signal 22, 1163–1174 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bernfield, M. et al. Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu. Rev. Cell Biol. 8, 365–393 (1992).

    Article  CAS  PubMed  Google Scholar 

  87. Kim, C. W., Goldberger, O. A., Gallo, R. L. & Bernfield, M. Members of the syndecan family of heparan sulfate proteoglycans are expressed in distinct cell-, tissue-, and development-specific patterns. Mol. Biol. Cell 5, 797–805 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Liu, W. et al. Heparan sulfate proteoglycans as adhesive and anti-invasive molecules. Syndecans and glypican have distinct functions. J. Biol. Chem. 273, 22825–22832 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Woods, A., Oh, E. S. & Couchman, J. R. Syndecan proteoglycans and cell adhesion. Matrix Biol. 17, 477–483 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Liebersbach, B. F. & Sanderson, R. D. Expression of syndecan-1 inhibits cell invasion into type I collagen. J. Biol. Chem. 269, 20013–20019 (1994).

    CAS  PubMed  Google Scholar 

  91. Dhodapkar, M. V. et al. Syndecan-1 is a multifunctional regulator of myeloma pathobiology: control of tumor cell survival, growth, and bone cell differentiation. Blood 91, 2679–2688 (1998).

    CAS  PubMed  Google Scholar 

  92. Endo, K. et al. Cleavage of syndecan-1 by membrane type matrix metalloproteinase-1 stimulates cell migration. J. Biol. Chem. 278, 40764–40770 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Kato, M. et al. Physiological degradation converts the soluble syndecan-1 ectodomain from an inhibitor to a potent activator of FGF-2. Nat. Med. 4, 691–697 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Mali, M., Elenius, K., Miettinen, H. M. & Jalkanen, M. Inhibition of basic fibroblast growth factor-induced growth promotion by overexpression of syndecan-1. J. Biol. Chem. 268, 24215–24222 (1993).

    CAS  PubMed  Google Scholar 

  95. Mali, M., Andtfolk, H., Miettinen, H. M. & Jalkanen, M. Suppression of tumor cell growth by syndecan-1 ectodomain. J. Biol. Chem. 269, 27795–27798 (1994).

    CAS  PubMed  Google Scholar 

  96. Nikolova, V. et al. Differential roles for membrane-bound and soluble syndecan-1 (CD138) in breast cancer progression. Carcinogenesis 30, 397–407 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Inki, P., Joensuu, H., Grenman, R., Klemi, P. & Jalkanen, M. Association between syndecan-1 expression and clinical outcome in squamous cell carcinoma of the head and neck. Br. J. Cancer 70, 319–323 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Matsumoto, A. et al. Reduced expression of syndecan-1 in human hepatocellular carcinoma with high metastatic potential. Int. J. Cancer 74, 482–491 (1997).

    Article  CAS  PubMed  Google Scholar 

  99. Nackaerts, K. et al. Heparan sulfate proteoglycan expression in human lung-cancer cells. Int. J. Cancer 74, 335–345 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. Pulkkinen, J. O., Penttinen, M., Jalkanen, M., Klemi, P. & Grenman, R. Syndecan-1: a new prognostic marker in laryngeal cancer. Acta Otolaryngol. 117, 312–315 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. Anttonen, A., Kajanti, M., Heikkila, P., Jalkanen, M. & Joensuu, H. Syndecan-1 expression has prognostic significance in head and neck carcinoma. Br. J. Cancer 79, 558–564 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Numa, F. et al. Syndecan-1 expression in cancer of the uterine cervix: association with lymph node metastasis. Int. J. Oncol. 20, 39–43 (2002).

    CAS  PubMed  Google Scholar 

  103. Loussouarn, D. et al. Prognostic impact of syndecan-1 expression in invasive ductal breast carcinomas. Br. J. Cancer 98, 1993–1998 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Leppa, S., Mali, M., Miettinen, H. M. & Jalkanen, M. Syndecan expression regulates cell morphology and growth of mouse mammary epithelial tumor cells. Proc. Natl Acad. Sci. USA 89, 932–936 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sun, H., Berquin, I. M., Owens, R. T., O'Flaherty, J. T. & Edwards, I. J. Peroxisome proliferator-activated receptor gamma-mediated upregulation of syndecan-1 by n-3 fatty acids promotes apoptosis of human breast cancer cells. Cancer Res. 68, 2912–2919 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hu, Y. et al. Syndecan-1-dependent suppression of PDK1/Akt/bad signaling by docosahexaenoic acid induces apoptosis in prostate cancer. Neoplasia 12, 826–836 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Conejo, J. R. et al. Syndecan-1 expression is upregulated in pancreatic but not in other gastrointestinal cancers. Int. J. Cancer 88, 12–20 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Barbareschi, M. et al. High syndecan-1 expression in breast carcinoma is related to an aggressive phenotype and to poorer prognosis. Cancer 98, 474–483 (2003).

    Article  PubMed  Google Scholar 

  109. Davies, E. J. et al. Distribution and clinical significance of heparan sulfate proteoglycans in ovarian cancer. Clin. Cancer Res. 10, 5178–5186 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Watanabe, A. et al. Expression of syndecans, a heparan sulfate proteoglycan, in malignant gliomas: participation of nuclear factor-kappaB in upregulation of syndecan-1 expression. J. Neurooncol. 77, 25–32 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Choi, D. S. et al. Syndecan-1, a key regulator of cell viability in endometrial cancer. Int. J. Cancer 121, 741–750 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Mennerich, D. et al. Shift of syndecan-1 expression from epithelial to stromal cells during progression of solid tumors. Eur. J. Cancer 40, 1373–1382 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Stanley, M. J., Stanley, M. W., Sanderson, R. D. & Zera, R. Syndecan-1 expression is induced in the stroma of infiltrating breast carcinoma. Am. J. Clin. Pathol. 112, 377–383 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Maeda, T., Alexander, C. M. & Friedl, A. Induction of syndecan-1 expression in stromal fibroblasts promotes proliferation of human breast cancer cells. Cancer Res. 64, 612–621 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Maeda, T., Desouky, J. & Friedl, A. Syndecan-1 expression by stromal fibroblasts promotes breast carcinoma growth in vivo and stimulates tumor angiogenesis. Oncogene 25, 1408–1412 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Su, G., Blaine, S. A., Qiao, D. & Friedl, A. Shedding of syndecan-1 by stromal fibroblasts stimulates human breast cancer cell proliferation via FGF2 activation. J. Biol. Chem. 282, 14906–14915 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Sanderson, R. D. et al. Enzymatic remodeling of heparan sulfate proteoglycans within the tumor microenvironment: growth regulation and the prospect of new cancer therapies. J. Cell Biochem. 96, 897–905 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Chen, D. et al. Syndecan-1 expression in locally invasive and metastatic prostate cancer. Urology 63, 402–407 (2004).

    Article  PubMed  Google Scholar 

  119. Kiviniemi, J. et al. Altered expression of syndecan-1 in prostate cancer. APMIS 112, 89–97 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Brimo, F., Vollmer, R. T., Friszt, M., Corcos, J. & Bismar, T. A. Syndecan-1 expression in prostate cancer and its value as biomarker for disease progression. BJU Int. 106, 418–423 (2010).

    Article  PubMed  Google Scholar 

  121. Shariat, S. F. et al. Prognostic value of syndecan-1 expression in patients treated with radical prostatectomy. BJU Int. 101, 232–237 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Zellweger, T. et al. Expression patterns of potential therapeutic targets in prostate cancer. Int. J. Cancer 113, 619–628 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Lerner, I. et al. Function of heparanase in prostate tumorigenesis: potential for therapy. Clin. Cancer Res. 14, 668–676 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Edwards, I. J. et al. In vivo and in vitro regulation of syndecan 1 in prostate cells by N.-3 polyunsaturated fatty acids. J. Biol. Chem. 283, 18441–18449 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Danielpour, D. Functions and regulation of transforming growth factor-beta (TGF-beta) in the prostate. Eur. J. Cancer 41, 846–857 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Sharifi, N., Hurt, E. M., Kawasaki, B. T. & Farrar, W. L. TGFBR3 loss and consequences in prostate cancer. Prostate 67, 301–311 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Ajiboye, S., Sissung, T. M., Sharifi, N. & Figg, W. D. More than an accessory: implications of type III transforming growth factor-beta receptor loss in prostate cancer. BJU Int. 105, 913–916 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Turley, R. S. et al. The type III transforming growth factor-beta receptor as a novel tumor suppressor gene in prostate cancer. Cancer Res. 67, 1090–1098 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. Lopez-Casillas, F., Payne, H. M., Andres, J. L. & Massague, J. Betaglycan can act as a dual modulator of TGF-beta access to signaling receptors: mapping of ligand binding and GAG attachment sites. J. Cell Biol. 124, 557–568 (1994).

    Article  CAS  PubMed  Google Scholar 

  130. Bandyopadhyay, A. et al. Systemic administration of a soluble betaglycan suppresses tumor growth, angiogenesis, and matrix metalloproteinase-9 expression in a human xenograft model of prostate cancer. Prostate 63, 81–90 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwards, I. Proteoglycans in prostate cancer. Nat Rev Urol 9, 196–206 (2012). https://doi.org/10.1038/nrurol.2012.19

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2012.19

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing