Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The epigenome as a therapeutic target in prostate cancer

Abstract

During cancer development and progression, tumor cells undergo abnormal epigenetic modifications, including DNA methylation, histone deacetylation and nucleosome remodeling. Collectively, these aberrations promote genomic instability and lead to silencing of tumor-suppressor genes and reactivation of oncogenic retroviruses. Epigenetic modifications, therefore, provide exciting new avenues for prostate cancer research. Promoter hypermethylation is widespread during neoplastic transformation of prostate cells, which suggests that restoration of a 'normal' epigenome through treatment with inhibitors of the enzymes involved could be clinically beneficial. Global patterns of histone modifications are also being defined and have been associated with clinical and pathologic predictors of prostate cancer outcome. Although treatment for localized prostate cancer can be curative, the development of successful therapies for the management of castration-resistant metastatic disease is urgently needed. Reactivation of tumor-suppressor genes by demethylating agents and histone deacetylase inhibitors could be a potential treatment option for patients with advanced disease.

Key Points

  • In addition to conventional mechanisms of gene inactivation, epigenetic changes—including gain and loss of DNA methylation and altered histone modifications—are considered a hallmark of human cancer

  • Reversal of DNA methylation and histone modifications could potentially be therapeutic, as epigenetic modifications result in stable, heritable changes in gene expression without altering genetic sequences or gene function

  • Prostate cancer is a model of 'epigenetic catastrophe', in which epigenetic changes that occur during the earliest stages of tumor initiation are maintained throughout disease progression

  • Prostate cancer is an excellent candidate for chemoprevention using epigenetic modulators, owing to its late age of onset and slow growth

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The many different faces of epigenetics.
Figure 2: Epigenetic markers of open and condensed chromatin.
Figure 3: Prostate cancer as a model of epigenetic catastrophe.

Similar content being viewed by others

References

  1. Perry, A. S., Foley, R., Woodson, K. & Lawler, M. The emerging roles of DNA methylation in the clinical management of prostate cancer. Endocr. Relat. Cancer 13, 357–377 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Schulz, W. A. & Hatina, J. Epigenetics of prostate cancer: beyond DNA methylation. J. Cell. Mol. Med. 10, 100–125 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Ferlay, J. et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer doi:10.1002/ijc.25516.

  4. Kohli, M. & Tindall, D. J. New developments in the medical management of prostate cancer. Mayo Clin. Proc. 85, 77–86 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Takai, D. & Jones, P. A. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc. Natl Acad. Sci. USA 99, 3740–3745 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bird, A. P. CpG-rich islands and the function of DNA methylation. Nature 321, 209–213 (1986).

    Article  CAS  PubMed  Google Scholar 

  7. Cooper, D. N. & Krawczak, M. Cytosine methylation and the fate of CpG dinucleotides in vertebrate genomes. Hum. Genet. 83, 181–188 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Maunakea, A. K. et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466, 253–257 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Comb, M. & Goodman, H. M. CpG methylation inhibits proenkephalin gene expression and binding of the transcription factor AP-2. Nucleic Acids Res. 18, 3975–3982 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mancini, D. N., Singh, S. M., Archer, T. K. & Rodenhiser, D. I. Site-specific DNA methylation in the neurofibromatosis (NF1) promoter interferes with binding of CREB and SP1 transcription factors. Oncogene 18, 4108–4119 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Baylin, S. B. DNA methylation and gene silencing in cancer. Nat. Clin. Pract. Oncol. 2, S4–S11 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Nan, X. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Jones, P. L. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat. Genet. 19, 187–191 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Bestor, T. H. Gene silencing. Methylation meets acetylation. Nature 393, 311–312 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Chodavarapu, R. K. et al. Relationship between nucleosome positioning and DNA methylation. Nature 466, 388–392 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yegnasubramanian, S. et al. Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res. 64, 1975–1986 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Jeronimo, C. et al. A quantitative promoter methylation profile of prostate cancer. Clin. Cancer Res. 10, 8472–8478 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Kang, G. H., Lee, S., Lee, H. J. & Hwang, K. S. Aberrant CpG island hypermethylation of multiple genes in prostate cancer and prostatic intraepithelial neoplasia. J. Pathol. 202, 233–240 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Maruyama, R. et al. Aberrant promoter methylation profile of prostate cancers and its relationship to clinicopathological features. Clin. Cancer Res. 8, 514–519 (2002).

    CAS  PubMed  Google Scholar 

  21. Sasaki, M. et al. Methylation and inactivation of estrogen, progesterone, and androgen receptors in prostate cancer. J. Natl Cancer Inst. 94, 384–390 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Nelson, W. G., De Marzo, A. M. & Yegnasubramanian, S. Epigenetic alterations in human prostate cancers. Endocrinology 150, 3991–4002 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, L. C. Epigenetics of prostate cancer. Front. Biosci. 12, 3377–3397 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Brooks, J. D. et al. CG island methylation changes near the GSTP1 gene in prostatic intraepithelial neoplasia. Cancer Epidemiol. Biomarkers Prev. 7, 531–536 (1998).

    CAS  PubMed  Google Scholar 

  25. Perry, A. S. et al. In silico mining identifies IGFBP3 as a novel target of methylation in prostate cancer. Br. J. Cancer 96, 1587–1594 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee, W. H. et al. Cytidine methylation of regulatory sequences near the pi-class glutathione S.-transferase gene accompanies human prostatic carcinogenesis. Proc. Natl Acad. Sci. USA 91, 11733–11737 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brothman, A. R. et al. Global hypomethylation is common in prostate cancer cells: a quantitative predictor for clinical outcome? Cancer Genet. Cytogenet. 156, 31–36 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Yegnasubramanian, S. et al. DNA hypomethylation arises later in prostate cancer progression than CpG island hypermethylation and contributes to metastatic tumor heterogeneity. Cancer Res. 68, 8954–8967 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Florl, A. R. et al. Coordinate hypermethylation at specific genes in prostate carcinoma precedes LINE-1 hypomethylation. Br. J. Cancer 91, 985–994 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Szyf, M., Pakneshan, P. & Rabbani, S. A. DNA demethylation and cancer: therapeutic implications. Cancer Lett. 211, 133–143 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Ogishima, T. et al. Increased heparanase expression is caused by promoter hypomethylation and up-regulation of transcriptional factor early growth response-1 in human prostate cancer. Clin. Cancer Res. 11, 1028–1036 (2005).

    CAS  PubMed  Google Scholar 

  32. Wang, Q. et al. Hypomethylation of WNT5A, CRIP1 and S100P in prostate cancer. Oncogene 26, 6560–6565 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Shukeir, N., Pakneshan, P., Chen, G., Szyf, M. & Rabbani, S. A. Alteration of the methylation status of tumor-promoting genes decreases prostate cancer cell invasiveness and tumorigenesis in vitro and in vivo. Cancer Res. 66, 9202–9210 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Stein, R., Gruenbaum, Y., Pollack, Y., Razin, A. & Cedar, H. Clonal inheritance of the pattern of DNA methylation in mouse cells. Proc. Natl Acad. Sci. USA 79, 61–65 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bostick, M. et al. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317, 1760–1764 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Sharif, J. et al. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450, 908–912 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Unoki, M., Nishidate, T. & Nakamura, Y. ICBP90, an E2F-1 target, recruits HDAC1 and binds to methyl-CpG through its SRA domain. Oncogene 23, 7601–7610 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Avvakumov, G. V. et al. Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1. Nature 455, 822–825 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Leonhardt, H., Page, A. W., Weier, H. U. & Bestor, T. H. A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell 71, 865–873 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Okano, M., Xie, S. & Li, E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat. Genet. 19, 219–220 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Chen, T., Ueda, Y., Dodge, J. E., Wang, Z. & Li, E. Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol. Cell Biol. 23, 5594–5605 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rhee, I. et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416, 552–556 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Leu, Y. W. et al. Double RNA interference of DNMT3b and DNMT1 enhances DNA demethylation and gene reactivation. Cancer Res. 63, 6110–6115 (2003).

    CAS  PubMed  Google Scholar 

  44. Rountree, M. R., Bachman, K. E. & Baylin, S. B. DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat. Genet. 25, 269–277 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Robertson, K. D. et al. DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat. Genet. 25, 338–342 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Fuks, F., Burgers, W. A., Godin, N., Kasai, M. & Kouzarides, T. Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. EMBO J. 20, 2536–2544 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fuks, F., Burgers, W. A., Brehm, A., Hughes-Davies, L. & Kouzarides, T. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat. Genet. 24, 88–91 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Burgers, W. A., Fuks, F. & Kouzarides, T. DNA methyltransferases get connected to chromatin. Trends Genet. 18, 275–277 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Hendrich, B. & Bird, A. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol. Cell Biol. 18, 6538–6547 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Prokhortchouk, A. et al. The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes Dev. 15, 1613–1618 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Filion, G. J. et al. A family of human zinc finger proteins that bind methylated DNA and repress transcription. Mol. Cell Biol. 26, 169–181 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ng, H. H., Jeppesen, P. & Bird, A. Active repression of methylated genes by the chromosomal protein MBD1. Mol. Cell Biol. 20, 1394–1406 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fujita, N. et al. Methyl-CpG binding domain 1 (MBD1) interacts with the Suv39h1-HP1 heterochromatic complex for DNA methylation-based transcriptional repression. J. Biol. Chem. 278, 24132–24138 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Fuks, F., Hurd, P. J., Deplus, R. & Kouzarides, T. The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res. 31, 2305–2312 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lopez-Serra, L. et al. A profile of methyl-CpG binding domain protein occupancy of hypermethylated promoter CpG islands of tumor suppressor genes in human cancer. Cancer Res. 66, 8342–8346 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Nightingale, K. P., O'Neill, L. P. & Turner, B. M. Histone modifications: signalling receptors and potential elements of a heritable epigenetic code. Curr. Opin. Genet. Dev. 16, 125–136 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Roth, S. Y., Denu, J. M. & Allis, C. D. Histone acetyltransferases. Annu. Rev. Biochem. 70, 81–120 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Thiagalingam, S. et al. Histone deacetylases: unique players in shaping the epigenetic histone code. Ann. NY Acad. Sci. 983, 84–100 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Novotny-Diermayr, V. et al. SB939, a novel potent and orally active histone deacetylase inhibitor with high tumor exposure and efficacy in mouse models of colorectal cancer. Mol. Cancer Ther. 9, 642–652 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Klose, R. J. & Zhang, Y. Regulation of histone methylation by demethylimination and demethylation. Nat. Rev. Mol. Cell Biol. 8, 307–318 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Bedford, M. T. & Richard, S. Arginine methylation an emerging regulator of protein function. Mol. Cell 18, 263–272 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Daniel, J. A., Pray-Grant, M. G. & Grant, P. A. Effector proteins for methylated histones: an expanding family. Cell Cycle 4, 919–926 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Seligson, D. B. et al. Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435, 1262–1266 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Ellinger, J. et al. Global levels of histone modifications predict prostate cancer recurrence. Prostate 70, 61–69 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Korkmaz, C. G., Fronsdal, K., Zhang, Y., Lorenzo, P. I. & Saatcioglu, F. Potentiation of androgen receptor transcriptional activity by inhibition of histone deacetylation—rescue of transcriptionally compromised mutants. J. Endocrinol. 182, 377–389 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Fu, M. et al. p300 and p300/cAMP-response element-binding protein-associated factor acetylate the androgen receptor at sites governing hormone-dependent transactivation. J. Biol. Chem. 275, 20853–20860 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Blanco, J. C. et al. The histone acetylase PCAF is a nuclear receptor coactivator. Genes Dev. 12, 1638–1651 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Spencer, T. E. et al. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389, 194–198 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Gaughan, L., Logan, I. R., Cook, S., Neal, D. E. & Robson, C. N. Tip60 and histone deacetylase 1 regulate androgen receptor activity through changes to the acetylation status of the receptor. J. Biol. Chem. 277, 25904–25913 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Shang, Y., Myers, M. & Brown, M. Formation of the androgen receptor transcription complex. Mol. Cell 9, 601–610 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Nagy, L. et al. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89, 373–380 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Dai, Y. et al. Sirt1 is required for antagonist-induced transcriptional repression of androgen-responsive genes by the androgen receptor. Mol. Endocrinol. 21, 1807–1821 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Welsbie, D. S. et al. Histone deacetylases are required for androgen receptor function in hormone-sensitive and castrate-resistant prostate cancer. Cancer Res. 69, 958–966 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kumar-Sinha, C., Tomlins, S. A. & Chinnaiyan, A. M. Recurrent gene fusions in prostate cancer. Nat. Rev. Cancer 8, 497–511 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Metzger, E. et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437, 436–439 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Kahl, P. et al. Androgen receptor coactivators lysine-specific histone demethylase 1 and four and a half LIM domain protein 2 predict risk of prostate cancer recurrence. Cancer Res. 66, 11341–11347 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Wissmann, M. et al. Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat. Cell Biol. 9, 347–353 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Laible, G. et al. Mammalian homologues of the Polycomb-group gene Enhancer of zeste mediate gene silencing in Drosophila heterochromatin and at S. cerevisiae telomeres. EMBO J. 16, 3219–3232 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vire, E. et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439, 871–874 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Collett, K. et al. Expression of enhancer of zeste homologue 2 is significantly associated with increased tumor cell proliferation and is a marker of aggressive breast cancer. Clin. Cancer Res. 12, 1168–1174 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Bachmann, I. M. et al. EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J. Clin. Oncol. 24, 268–273 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Varambally, S. et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624–629 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Tsai, M. C. et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689–693 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ozen, M., Creighton, C. J., Ozdemir, M. & Ittmann, M. Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 27, 1788–1793 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Ambs, S. et al. Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res. 68, 6162–6170 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Friedman, J. M. et al. The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res. 69, 2623–2629 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Varambally, S. et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322, 1695–1699 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rauhala, H. E. et al. miR-193b is an epigenetically regulated putative tumor suppressor in prostate cancer. Int. J. Cancer 127, 1363–1372 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Lujambio, A. et al. A microRNA DNA methylation signature for human cancer metastasis. Proc. Natl Acad. Sci. USA 105, 13556–13561 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Bolden, J. E., Peart, M. J. & Johnstone, R. W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov. 5, 769–784 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Dokmanovic, M. & Marks, P. A. Prospects: histone deacetylase inhibitors. J. Cell Biochem. 96, 293–304 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Minucci, S. & Pelicci, P. G. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat. Rev. Cancer 6, 38–51 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Shabbeer, S. et al. Multiple Molecular pathways explain the anti-proliferative effect of valproic acid on prostate cancer cells in vitro and in vivo. Prostate 67, 1099–1110 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Xia, Q. et al. Chronic administration of valproic acid inhibits prostate cancer cell growth in vitro and in vivo. Cancer Res. 66, 7237–7244 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Qian, D. Z. et al. Targeting tumor angiogenesis with histone deacetylase inhibitors: the hydroxamic acid derivative LBH589. Clin. Cancer Res. 12, 634–642 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Rathkopf, D. et al. A phase I study of oral panobinostat alone and in combination with docetaxel in patients with castration-resistant prostate cancer. Cancer Chemother. Pharmacol. 66, 181–189 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Bradley, D. et al. Vorinostat in advanced prostate cancer patients progressing on prior chemotherapy (National Cancer Institute Trial 6862): trial results and interleukin-6 analysis: a study by the Department of Defense Prostate Cancer Clinical Trial Consortium and University of Chicago Phase 2 Consortium. Cancer 115, 5541–5549 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Butler, L. M. et al. Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res. 60, 5165–5170 (2000).

    CAS  PubMed  Google Scholar 

  100. Rokhlin, O. W. et al. Mechanisms of cell death induced by histone deacetylase inhibitors in androgen receptor-positive prostate cancer cells. Mol. Cancer Res. 4, 113–123 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Marrocco, D. L. et al. Suberoylanilide hydroxamic acid (vorinostat) represses androgen receptor expression and acts synergistically with an androgen receptor antagonist to inhibit prostate cancer cell proliferation. Mol. Cancer Ther. 6, 51–60 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Ueda, H. et al. FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. I. Taxonomy, fermentation, isolation, physico-chemical and biological properties, and antitumor activity. J. Antibiot. (Tokyo) 47, 301–310 (1994).

    Article  CAS  Google Scholar 

  103. Ueda, H., Nakajima, H., Hori, Y., Goto, T. & Okuhara, M. Action of FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum no. 968, on Ha-ras transformed NIH3T3 cells. Biosci. Biotechnol. Biochem. 58, 1579–1583 (1994).

    Article  CAS  PubMed  Google Scholar 

  104. Molife, L. R. et al. Phase II, two-stage, single-arm trial of the histone deacetylase inhibitor (HDACi) romidepsin in metastatic castration-resistant prostate cancer (CRPC). Ann. Oncol. 21, 109–113 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Qian, D. Z. et al. Antitumor activity of the histone deacetylase inhibitor MS-275 in prostate cancer models. Prostate 67, 1182–1193 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Miller, T. A., Witter, D. J. & Belvedere, S. Histone deacetylase inhibitors. J. Med. Chem. 46, 5097–5116 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Kulp, S. K., Chen, C. S., Wang, D. S. & Chen, C. Y. Antitumor effects of a novel phenylbutyrate-based histone deacetylase inhibitor, (S.)-HDAC-42, in prostate cancer. Clin. Cancer Res. 12, 5199–5206 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Chen, C. S. et al. Histone deacetylase inhibitors sensitize prostate cancer cells to agents that produce DNA double-strand breaks by targeting Ku70 acetylation. Cancer Res. 67, 5318–5327 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Kwon, H. J., Owa, T., Hassig, C. A., Shimada, J. & Schreiber, S. L. Depudecin induces morphological reversion of transformed fibroblasts via the inhibition of histone deacetylase. Proc. Natl Acad. Sci. USA 95, 3356–3361 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chia, K., Beamish, H., Jafferi, K. & Gabrielli, B. The histone deacetylase inhibitor MGCD0103 has both deacetylase and microtubule inhibitory activity. Mol. Pharmacol. 78, 436–443 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. El-Khoury, V. et al. The histone deacetylase inhibitor MGCD0103 induces apoptosis in B-cell chronic lymphocytic leukemia cells through a mitochondria-mediated caspase activation cascade. Mol. Cancer Ther. 9, 1349–1360 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Fournel, M. et al. MGCD0103, a novel isotype-selective histone deacetylase inhibitor, has broad spectrum antitumor activity in vitro and in vivo. Mol. Cancer Ther. 7, 759–768 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Fronsdal, K. & Saatcioglu, F. Histone deacetylase inhibitors differentially mediate apoptosis in prostate cancer cells. Prostate 62, 299–306 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Sandor, V. et al. P21-dependent g(1)arrest with downregulation of cyclin D1 and upregulation of cyclin E by the histone deacetylase inhibitor FR901228. Br. J. Cancer 83, 817–825 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ueda, H. et al. FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. III. Antitumor activities on experimental tumors in mice. J. Antibiot. (Tokyo) 47, 315–323 (1994).

    Article  CAS  Google Scholar 

  116. Magner, W. J. et al. Activation of MHC class I, II, and CD40 gene expression by histone deacetylase inhibitors. J. Immunol. 165, 7017–7024 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Deroanne, C. F. et al. Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene 21, 427–436 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Maeda, T., Towatari, M., Kosugi, H. & Saito, H. Up-regulation of costimulatory/adhesion molecules by histone deacetylase inhibitors in acute myeloid leukemia cells. Blood 96, 3847–3856 (2000).

    CAS  PubMed  Google Scholar 

  119. Martinez-Balbas, M. A., Bauer, U. M., Nielsen, S. J., Brehm, A. & Kouzarides, T. Regulation of E2F1 activity by acetylation. EMBO J. 19, 662–671 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Gu, W. & Roeder, R. G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595–606 (1997).

    Article  CAS  PubMed  Google Scholar 

  121. Yuan, Z. L., Guan, Y. J., Chatterjee, D. & Chin, Y. E. Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science 307, 269–273 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Chen, L., Fischle, W., Verdin, E. & Greene, W. C. Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science 293, 1653–1657 (2001).

    Article  CAS  Google Scholar 

  123. Pediconi, N. et al. Differential regulation of E2F1 apoptotic target genes in response to DNA damage. Nat. Cell Biol. 5, 552–558 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Costanzo, A. et al. DNA damage-dependent acetylation of p73 dictates the selective activation of apoptotic target genes. Mol. Cell 9, 175–186 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Tan, J. et al. Apoptosis signal-regulating kinase 1 is a direct target of E2F1 and contributes to histone deacetylase inhibitor-induced apoptosis through positive feedback regulation of E2F1 apoptotic activity. J. Biol. Chem. 281, 10508–10515 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Roy, S., Packman, K., Jeffrey, R. & Tenniswood, M. Histone deacetylase inhibitors differentially stabilize acetylated p53 and induce cell cycle arrest or apoptosis in prostate cancer cells. Cell Death Differ. 12, 482–491 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Liu, Y., Colosimo, A. L., Yang, X. J. & Liao, D. Adenovirus E1B 55-kilodalton oncoprotein inhibits p53 acetylation by PCAF. Mol. Cell Biol. 20, 5540–5553 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Roy, S. & Tenniswood, M. Site-specific acetylation of p53 directs selective transcription complex assembly. J. Biol. Chem. 282, 4765–4771 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. Cohen, H. Y. et al. Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol. Cell 13, 627–638 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Jones, P. A. & Taylor, S. M. Cellular differentiation, cytidine analogs and DNA methylation. Cell 20, 85–93 (1980).

    Article  CAS  PubMed  Google Scholar 

  131. Friedman, S. The irreversible binding of azacytosine-containing DNA fragments to bacterial DNA(cytosine-5)methyltransferases. J. Biol. Chem. 260, 5698–5705 (1985).

    CAS  PubMed  Google Scholar 

  132. Santi, D. V., Norment, A. & Garrett, C. E. Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine. Proc. Natl Acad. Sci. USA 81, 6993–6997 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Juttermann, R., Li, E. & Jaenisch, R. Toxicity of 5-aza-2'-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc. Natl Acad. Sci. USA 91, 11797–11801 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yoo, C. B. & Jones, P. A. Epigenetic therapy of cancer: past, present and future. Nat. Rev. Drug Discov. 5, 37–50 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Soengas, M. S. et al. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409, 207–211 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Issa, J. P. & Kantarjian, H. M. Targeting DNA methylation. Clin. Cancer Res. 15, 3938–3946 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Goffin, J. & Eisenhauer, E. DNA methyltransferase inhibitors-state of the art. Ann. Oncol. 13, 1699–1716 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Nakayama, T. et al. The role of epigenetic modifications in retinoic acid receptor beta2 gene expression in human prostate cancers. Lab. Invest. 81, 1049–1057 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Lin, X. et al. GSTP1 CpG island hypermethylation is responsible for the absence of GSTP1 expression in human prostate cancer cells. Am. J. Pathol. 159, 1815–1826 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Bender, C. M., Pao, M. M. & Jones, P. A. Inhibition of DNA methylation by 5-aza-2'-deoxycytidine suppresses the growth of human tumor cell lines. Cancer Res. 58, 95–101 (1998).

    CAS  PubMed  Google Scholar 

  141. Wijermans, P. et al. Low-dose 5-aza-2'-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phase II study in elderly patients. J. Clin. Oncol. 18, 956–962 (2000).

    Article  CAS  PubMed  Google Scholar 

  142. Issa, J. P. et al. Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2'-deoxycytidine (decitabine) in hematopoietic malignancies. Blood 103, 1635–1640 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. Samlowski, W. E. et al. Evaluation of a 7-day continuous intravenous infusion of decitabine: inhibition of promoter-specific and global genomic DNA methylation. J. Clin. Oncol. 23, 3897–3905 (2005).

    Article  CAS  PubMed  Google Scholar 

  144. Pohlmann, P. et al. Phase II trial of cisplatin plus decitabine, a new DNA hypomethylating agent, in patients with advanced squamous cell carcinoma of the cervix. Am. J. Clin. Oncol. 25, 496–501 (2002).

    Article  PubMed  Google Scholar 

  145. Jackson-Grusby, L., Laird, P. W., Magge, S. N., Moeller, B. J. & Jaenisch, R. Mutagenicity of 5-aza-2'-deoxycytidine is mediated by the mammalian DNA methyltransferase. Proc. Natl Acad. Sci. USA 94, 4681–4685 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Walker, C. & Nettesheim, P. In vitro neoplastic progression of rat tracheal epithelial cells transformed by diverse carcinogens. Cancer Res. 49, 4427–4430 (1989).

    CAS  PubMed  Google Scholar 

  147. Ho, D. H. Distribution of kinase and deaminase of 1-beta-D-arabinofuranosylcytosine in tissues of man and mouse. Cancer Res. 33, 2816–2820 (1973).

    CAS  PubMed  Google Scholar 

  148. Egger, G., Liang, G., Aparicio, A. & Jones, P. A. Epigenetics in human disease and prospects for epigenetic therapy. Nature 429, 457–463 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Sonpavde, G. et al. Azacitidine favorably modulates PSA kinetics correlating with plasma DNA LINE-1 hypomethylation in men with chemonaive castration-resistant prostate cancer. Urol. Oncol. doi:10.1016/j.urolonc.2009.09.015.

  150. Thibault, A. et al. A phase II study of 5-aza-2'deoxycytidine (decitabine) in hormone independent metastatic (D2) prostate cancer. Tumori 84, 87–89 (1998).

    Article  CAS  PubMed  Google Scholar 

  151. Cheng, J. C. et al. Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J. Natl Cancer Inst. 95, 399–409 (2003).

    Article  CAS  PubMed  Google Scholar 

  152. Cheng, J. C. et al. Continuous zebularine treatment effectively sustains demethylation in human bladder cancer cells. Mol. Cell Biol. 24, 1270–1278 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lin, X. et al. Reversal of GSTP1 CpG island hypermethylation and reactivation of pi-class glutathione S.-transferase (GSTP1) expression in human prostate cancer cells by treatment with procainamide. Cancer Res. 61, 8611–8616 (2001).

    CAS  PubMed  Google Scholar 

  154. Villar-Garea, A., Fraga, M. F., Espada, J. & Esteller, M. Procaine is a DNA-demethylating agent with growth-inhibitory effects in human cancer cells. Cancer Res. 63, 4984–4989 (2003).

    CAS  PubMed  Google Scholar 

  155. Davis, A. J. et al. Phase I and pharmacologic study of the human DNA methyltransferase antisense oligodeoxynucleotide MG98 given as a 21-day continuous infusion every 4 weeks. Invest. New Drugs 21, 85–97 (2003).

    Article  CAS  PubMed  Google Scholar 

  156. Winquist, E. et al. Phase II trial of DNA methyltransferase 1 inhibition with the antisense oligonucleotide MG98 in patients with metastatic renal carcinoma: a National Cancer Institute of Canada Clinical Trials Group investigational new drug study. Invest. New Drugs 24, 159–167 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Kassis, E. S. et al. Depletion of DNA methyltransferase 1 and/or DNA methyltransferase 3b mediates growth arrest and apoptosis in lung and esophageal cancer and malignant pleural mesothelioma cells. J. Thorac Cardiovasc. Surg. 131, 298–306 (2006).

    Article  CAS  PubMed  Google Scholar 

  158. Brueckner, B. et al. Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res. 65, 6305–6311 (2005).

    Article  CAS  PubMed  Google Scholar 

  159. Chuang, J. C. et al. Comparison of biological effects of non-nucleoside DNA methylation inhibitors versus 5-aza-2'-deoxycytidine. Mol. Cancer Ther. 4, 1515–1520 (2005).

    Article  CAS  PubMed  Google Scholar 

  160. Stresemann, C., Brueckner, B., Musch, T., Stopper, H. & Lyko, F. Functional diversity of DNA methyltransferase inhibitors in human cancer cell lines. Cancer Res. 66, 2794–2800 (2006).

    Article  CAS  PubMed  Google Scholar 

  161. Baylin, S. B. & Ohm, J. E. Epigenetic gene silencing in cancer—a mechanism for early oncogenic pathway addiction? Nat. Rev. Cancer 6, 107–116 (2006).

    Article  CAS  PubMed  Google Scholar 

  162. Feinberg, A. P., Ohlsson, R. & Henikoff, S. The epigenetic progenitor origin of human cancer. Nat. Rev. Genet. 7, 21–33 (2006).

    Article  CAS  PubMed  Google Scholar 

  163. Nelson, W. G. et al. Preneoplastic prostate lesions: an opportunity for prostate cancer prevention. Ann. NY Acad. Sci. 952, 135–144 (2001).

    Article  CAS  PubMed  Google Scholar 

  164. Laird, P. W. et al. Suppression of intestinal neoplasia by DNA hypomethylation. Cell 81, 197–205 (1995).

    Article  CAS  PubMed  Google Scholar 

  165. McCabe, M. T. et al. Inhibition of DNA methyltransferase activity prevents tumorigenesis in a mouse model of prostate cancer. Cancer Res. 66, 385–392 (2006).

    Article  CAS  PubMed  Google Scholar 

  166. Fang, M., Chen, D. & Yang, C. S. Dietary polyphenols may affect DNA methylation. J. Nutr. 137, 223S–228S (2007).

    Article  CAS  PubMed  Google Scholar 

  167. Pandey, M. & Gupta, S. Green tea and prostate cancer: from bench to clinic. Front. Biosci. (Elite Ed.) 1, 13–25 (2009).

    Article  Google Scholar 

  168. Majid, S. et al. Genistein reverses hypermethylation and induces active histone modifications in tumor suppressor gene B-Cell translocation gene 3 in prostate cancer. Cancer 116, 66–76 (2010).

    Article  CAS  PubMed  Google Scholar 

  169. Wang, L. G. et al. Dual action on promoter demethylation and chromatin by an isothiocyanate restored GSTP1 silenced in prostate cancer. Mol. Carcinog. 46, 24–31 (2007).

    Article  CAS  PubMed  Google Scholar 

  170. Chiao, J. W. et al. Ingestion of an isothiocyanate metabolite from cruciferous vegetables inhibits growth of human prostate cancer cell xenografts by apoptosis and cell cycle arrest. Carcinogenesis 25, 1403–1408 (2004).

    Article  CAS  PubMed  Google Scholar 

  171. Xiao, D. et al. Caspase-dependent apoptosis induction by phenethyl isothiocyanate, a cruciferous vegetable-derived cancer chemopreventive agent, is mediated by Bak and Bax. Clin. Cancer Res. 11, 2670–2679 (2005).

    Article  CAS  PubMed  Google Scholar 

  172. Khor, T. O. et al. Combined inhibitory effects of curcumin and phenethyl isothiocyanate on the growth of human PC-3 prostate xenografts in immunodeficient mice. Cancer Res. 66, 613–621 (2006).

    Article  CAS  PubMed  Google Scholar 

  173. Han, S. S., Keum, Y. S., Seo, H. J. & Surh, Y. J. Curcumin suppresses activation of NF-kappaB and AP-1 induced by phorbol ester in cultured human promyelocytic leukemia cells. J. Biochem. Mol. Biol. 35, 337–342 (2002).

    CAS  PubMed  Google Scholar 

  174. Shankar, S. & Srivastava, R. K. Involvement of Bcl-2 family members, phosphatidylinositol 3'-kinase/AKT and mitochondrial p53 in curcumin (diferulolylmethane)-induced apoptosis in prostate cancer. Int. J. Oncol. 30, 905–918 (2007).

    CAS  PubMed  Google Scholar 

  175. Chendil, D., Ranga, R. S., Meigooni, D., Sathishkumar, S. & Ahmed, M. M. Curcumin confers radiosensitizing effect in prostate cancer cell line PC-3. Oncogene 23, 1599–1607 (2004).

    Article  CAS  PubMed  Google Scholar 

  176. Cameron, E. E., Bachman, K. E., Myohanen, S., Herman, J. G. & Baylin, S. B. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat. Genet. 21, 103–107 (1999).

    Article  CAS  PubMed  Google Scholar 

  177. Nakayama, T. et al. Epigenetic regulation of androgen receptor gene expression in human prostate cancers. Lab. Invest. 80, 1789–1796 (2000).

    Article  CAS  PubMed  Google Scholar 

  178. Jarrard, D. F. et al. Methylation of the androgen receptor promoter CpG island is associated with loss of androgen expression in prostate cancer cells. Cancer Res. 58, 5310–5314 (1998).

    CAS  PubMed  Google Scholar 

  179. Camphausen, K., Scott, T., Sproull, M. & Tofilon, P. J. Enhancement of xenograft tumor radiosensitivity by the histone deacetylase inhibitor MS-275 and correlation with histone hyperacetylation. Clin. Cancer Res. 10, 6066–6071 (2004).

    Article  CAS  PubMed  Google Scholar 

  180. Annicotte, J. S. et al. Peroxisome proliferator-activated receptor gamma regulates E-cadherin expression and inhibits growth and invasion of prostate cancer. Mol. Cell Biol. 26, 7561–7574 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Lakshmikanthan, V., Kaddour-Djebbar, I., Lewis, R. W. & Kumar, M. V. SAHA-sensitized prostate cancer cells to TNFalpha-related apoptosis-inducing ligand (TRAIL): mechanisms leading to synergistic apoptosis. Int. J. Cancer 119, 221–228 (2006).

    Article  CAS  PubMed  Google Scholar 

  182. VanOosten, R. L., Earel, J. K. Jr & Griffith, T. S. Histone deacetylase inhibitors enhance Ad5-TRAIL killing of TRAIL-resistant prostate tumor cells through increased caspase-2 activity. Apoptosis 12, 561–571 (2007).

    Article  CAS  PubMed  Google Scholar 

  183. Vanoosten, R. L., Moore, J. M., Ludwig, A. T. & Griffith, T. S. Depsipeptide (FR901228) enhances the cytotoxic activity of TRAIL by redistributing TRAIL receptor to membrane lipid rafts. Mol. Ther. 11, 542–552 (2005).

    Article  CAS  PubMed  Google Scholar 

  184. Kanzaki, M. et al. Low concentrations of the histone deacetylase inhibitor, depsipeptide, enhance the effects of gemcitabine and docetaxel in hormone refractory prostate cancer cells. Oncol. Rep. 17, 761–767 (2007).

    CAS  PubMed  Google Scholar 

  185. Liu, X., Gomez-Pinillos, A., Johnson, E. M. & Ferrari, A. C. Induction of bicalutamide sensitivity in prostate cancer cells by an epigenetic Puralpha-mediated decrease in androgen receptor levels. Prostate 70, 179–189 (2010).

    CAS  PubMed  Google Scholar 

  186. Shang, D. et al. Synergy of 5-aza-2'-deoxycytidine (DAC) and paclitaxel in both androgen-dependent and -independent prostate cancer cell lines. Cancer Lett. 278, 82–87 (2009).

    Article  CAS  PubMed  Google Scholar 

  187. Fang, X., Zheng, C., Liu, Z., Ekman, P. & Xu, D. Enhanced sensitivity of prostate cancer DU145 cells to cisplatinum by 5-aza-2'-deoxycytidine. Oncol. Rep. 12, 523–526 (2004).

    CAS  PubMed  Google Scholar 

  188. Zorn, C. S. et al. 5-Aza-2'-deoxycytidine delays androgen-independent disease and improves survival in the transgenic adenocarcinoma of the mouse prostate mouse model of prostate cancer. Clin. Cancer Res. 13, 2136–2143 (2007).

    Article  CAS  PubMed  Google Scholar 

  189. Gravina, G. L. et al. 5-Azacitidine restores and amplifies the bicalutamide response on preclinical models of androgen receptor expressing or deficient prostate tumors. Prostate 70, 1166–1178 (2010).

    Article  CAS  PubMed  Google Scholar 

  190. Bender, C. M. et al. Roles of cell division and gene transcription in the methylation of CpG islands. Mol. Cell Biol. 19, 6690–6698 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Bastian, P. J. et al. CpG island hypermethylation profile in the serum of men with clinically localized and hormone refractory metastatic prostate cancer. J. Urol. 179, 529–534; discussion 534–535 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Fabbri, M. et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc. Natl Acad. Sci. USA 104, 15805–15810 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Lujambio, A. et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res. 67, 1424–1429 (2007).

    Article  CAS  PubMed  Google Scholar 

  194. Ting, A. H. et al. A requirement for DICER to maintain full promoter CpG island hypermethylation in human cancer cells. Cancer Res. 68, 2570–2575 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Morris, K. V., Chan, S. W., Jacobsen, S. E. & Looney, D. J. Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305, 1289–1292 (2004).

    Article  CAS  PubMed  Google Scholar 

  196. Vanaja, D. K. et al. PDLIM4 repression by hypermethylation as a potential biomarker for prostate cancer. Clin. Cancer Res. 12, 1128–1136 (2006).

    Article  CAS  PubMed  Google Scholar 

  197. Pakneshan, P., Xing, R. H. & Rabbani, S. A. Methylation status of uPA promoter as a molecular mechanism regulating prostate cancer invasion and growth in vitro and in vivo. FASEB J. 17, 1081–1088 (2003).

    Article  CAS  PubMed  Google Scholar 

  198. Roman-Gomez, J. et al. Promoter hypomethylation of the LINE-1 retrotransposable elements activates sense/antisense transcription and marks the progression of chronic myeloid leukemia. Oncogene 24, 7213–7223 (2005).

    Article  CAS  PubMed  Google Scholar 

  199. Chalitchagorn, K. et al. Distinctive pattern of LINE-1 methylation level in normal tissues and the association with carcinogenesis. Oncogene 23, 8841–8846 (2004).

    Article  CAS  PubMed  Google Scholar 

  200. Ehrlich, M. DNA methylation in cancer: too much, but also too little. Oncogene 21, 5400–5413 (2002).

    Article  CAS  PubMed  Google Scholar 

  201. Schulz, W. A. et al. Genomewide DNA hypomethylation is associated with alterations on chromosome 8 in prostate carcinoma. Genes Chromosomes Cancer 35, 58–65 (2002).

    Article  CAS  PubMed  Google Scholar 

  202. Eden, A., Gaudet, F., Waghmare, A. & Jaenisch, R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300, 455 (2003).

    Article  CAS  PubMed  Google Scholar 

  203. Jarrard, D. F., Bussemakers, M. J., Bova, G. S. & Isaacs, W. B. Regional loss of imprinting of the insulin-like growth factor II gene occurs in human prostate tissues. Clin. Cancer Res. 1, 1471–1478 (1995).

    CAS  PubMed  Google Scholar 

  204. Schwer, B. & Verdin, E. Conserved metabolic regulatory functions of sirtuins. Cell. Metab. 7, 104–112 (2008).

    Article  CAS  PubMed  Google Scholar 

  205. Haberland, M., Montgomery, R. L. & Olson, E. N. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet. 10, 32–42 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge grant support from the Irish Cancer Society.

Author information

Authors and Affiliations

Authors

Contributions

A. S. Perry researched data for, and wrote, the article. R. W. G. Watson, M. Lawler and D. Hollywood reviewed and edited the article before submission.

Corresponding author

Correspondence to Antoinette S. Perry.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perry, A., Watson, R., Lawler, M. et al. The epigenome as a therapeutic target in prostate cancer. Nat Rev Urol 7, 668–680 (2010). https://doi.org/10.1038/nrurol.2010.185

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2010.185

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing