Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Treatment of neuromyelitis optica: state-of-the-art and emerging therapies

Key Points

  • Most patients with neuromyelitis optica (NMO) have serum IgG antibodies against astrocytic aquaporin-4 (AQP4) channels, a minority have antibodies to myelin oligodendrocyte glycoprotein, and some have neither

  • Current NMO treatments include corticosteroids and plasma exchange, which reduce the severity of acute attacks, and prednisolone, rituximab, cyclophosphamide, azathioprine, mycophenolate, mitoxantrone, methotrexate and cyclosporine, which prevent relapses

  • Some multiple sclerosis treatments, such as IFN-β, fingolimod and natalizumab, can be harmful in NMO

  • Approved therapies with potential for repurposing in NMO include eculizumab (complement inhibitor), tocilizumab (IL-6 receptor inhibitor), sivelestat and cetirizine (granulocyte inhibitors), intravenous immunoglobulin, CD19-depleting agents, and anti-TNF therapy

  • Potential therapeutic approaches include inhibition of AQP4-IgG binding (aquaporumab, small molecules), AQP4-IgG inactivation (endoglycosidase S, IgG-degrading enzyme), alternative complement inhibitors (C1inh, compstatin, CD59), anti-FcγRIII antibody, VEGF inhibition (bevacizumab), and antigen-specific tolerization

  • Challenges for NMO therapeutics include optimization of drug penetration into NMO lesions, clinical trial design (given the small patient numbers), and management of seronegative patients

Abstract

Neuromyelitis optica (NMO) is an autoimmune disease of the CNS that is characterized by inflammatory demyelinating lesions in the spinal cord and optic nerve, potentially leading to paralysis and blindness. NMO can usually be distinguished from multiple sclerosis (MS) on the basis of seropositivity for IgG antibodies against the astrocytic water channel aquaporin-4 (AQP4). Differentiation from MS is crucial, because some MS treatments can exacerbate NMO. NMO pathogenesis involves AQP4-IgG antibody binding to astrocytic AQP4, which causes complement-dependent cytotoxicity and secondary inflammation with granulocyte and macrophage infiltration, blood–brain barrier disruption and oligodendrocyte injury. Current NMO treatments include general immunosuppressive agents, B-cell depletion, and plasma exchange. Therapeutic strategies targeting complement proteins, the IL-6 receptor, neutrophils, eosinophils and CD19—all initially developed for other indications—are under clinical evaluation for repurposing for NMO. Therapies in the preclinical phase include AQP4-blocking antibodies and AQP4-IgG enzymatic inactivation. Additional, albeit currently theoretical, treatment options include reduction of AQP4 expression, disruption of AQP4 orthogonal arrays, enhancement of complement inhibitor expression, restoration of the blood–brain barrier, and induction of immune tolerance. Despite the many therapeutic options in NMO, no controlled clinical trials in patients with this condition have been conducted to date.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of NMO pathogenesis.
Figure 2: Pharmacological targets in NMO.
Figure 3: AQP4-IgG blocking and inactivation strategies for NMO therapy.
Figure 4: Complement activation pathways and complement drug targets.

Similar content being viewed by others

References

  1. Lennon, V. A. et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 364, 2106–2112 (2004).

    CAS  PubMed  Google Scholar 

  2. Lennon, V. A., Kryzer, T. J., Pittock, S. J., Verkman, A. S. & Hinson, S. R. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J. Exp. Med. 202, 473–477 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hinson, S. R. et al. Pathogenic potential of IgG binding to water channel extracellular domain in neuromyelitis optica. Neurology 69, 2221–2231 (2007).

    CAS  PubMed  Google Scholar 

  4. Wingerchuk, D. M., Lennon, V. A., Pittock, S. J., Lucchinetti, C. F. & Weinshenker, B. G. Revised diagnostic criteria for neuromyelitis optica. Neurology 66, 1485–1489 (2006).

    CAS  PubMed  Google Scholar 

  5. Cabre, P. et al. MS and neuromyelitis optica in Martinique (French West Indies). Neurology 56, 507–514 (2001).

    CAS  PubMed  Google Scholar 

  6. Cabrera-Gomez, J. A., Kurtzke, J. F., Gonzalez-Quevedo, A. & Lara-Rodriguez, R. An epidemiological study of neuromyelitis optica in Cuba. J. Neurol. 256, 35–44 (2009).

    PubMed  Google Scholar 

  7. Asgari, N. et al. A population-based study of neuromyelitis optica in Caucasians. Neurology 76, 1589–1595 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Banwell, B. et al. Neuromyelitis optica-IgG in childhood inflammatory demyelinating CNS disorders. Neurology 70, 344–352 (2008).

    CAS  PubMed  Google Scholar 

  9. Nagaishi, A. et al. Clinical features of neuromyelitis optica in a large Japanese cohort: comparison between phenotypes. J. Neurol. Neurosurg. Psychiatry 82, 1360–1364 (2011).

    PubMed  Google Scholar 

  10. Jarius, S. et al. Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: a multicentre study of 175 patients. J. Neuroinflammation 9, 14 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Jacob, A. et al. Current concept of neuromyelitis optica (NMO) and NMO spectrum disorders. J. Neurol. Neurosurg. Psychiatry 84, 922–930 (2013).

    PubMed  Google Scholar 

  12. Papadopoulos, M. C. & Verkman, A. S. Aquaporin 4 and neuromyelitis optica. Lancet Neurol. 11, 535–544 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Iyer, A., Elsone, L., Appleton, R. & Jacob, A. A review of the current literature and a guide to the early diagnosis of autoimmune disorders associated with neuromyelitis optica. Autoimmunity 47, 154–161 (2014).

    CAS  PubMed  Google Scholar 

  14. Matiello, M. et al. Genetic analysis of aquaporin-4 in neuromyelitis optica. Neurology 77, 1149–1155 (2011).

    CAS  PubMed  Google Scholar 

  15. Matsushita, T. et al. Association of the HLA-DPB1*0501 allele with anti-aquaporin-4 antibody positivity in Japanese patients with idiopathic central nervous system demyelinating disorders. Tissue Antigens 73, 171–176 (2009).

    CAS  PubMed  Google Scholar 

  16. Brum, D. G. et al. HLA-DRB association in neuromyelitis optica is different from that observed in multiple sclerosis. Mult. Scler. 16, 21–29 (2010).

    CAS  PubMed  Google Scholar 

  17. Deschamps, R. et al. Different HLA class II (DRB1 and DQB1) alleles determine either susceptibility or resistance to NMO and multiple sclerosis among the French Afro-Caribbean population. Mult. Scler. 17, 24–31 (2011).

    CAS  PubMed  Google Scholar 

  18. Zephir, H. et al. Is neuromyelitis optica associated with human leukocyte antigen? Mult. Scler. 15, 571–579 (2009).

    CAS  PubMed  Google Scholar 

  19. Matiello, M. et al. Familial neuromyelitis optica. Neurology 75, 310–315 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Matsuoka, T. et al. Heterogeneity of aquaporin-4 autoimmunity and spinal cord lesions in multiple sclerosis in Japanese. Brain 130, 1206–1223 (2007).

    PubMed  Google Scholar 

  21. Nakashima, I. et al. Clinical and MRI features of Japanese patients with multiple sclerosis positive for NMO-IgG. J. Neurol. Neurosurg. Psychiatry 77, 1073–1075 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu, J. S., Zhang, M. N., Carroll, W. M. & Kermode, A. G. Characterisation of the spectrum of demyelinating disease in Western Australia. J. Neurol. Neurosurg. Psychiatry 79, 1022–1026 (2008).

    PubMed  Google Scholar 

  23. Weinshenker, B. G. & Wingerchuk, D. M. The two faces of neuromyelitis optica. Neurology 82, 466–467 (2014).

    PubMed  Google Scholar 

  24. Jarius, S. & Wildemann, B. AQP4 antibodies in neuromyelitis optica: diagnostic and pathogenetic relevance. Nat. Rev. Neurol. 6, 383–392 (2010).

    CAS  PubMed  Google Scholar 

  25. Jarius, S. et al. Mechanisms of disease: aquaporin-4 antibodies in neuromyelitis optica. Nat. Clin. Pract. Neurol. 4, 202–214 (2008).

    CAS  PubMed  Google Scholar 

  26. Varrin-Doyer, M. et al. Aquaporin 4-specific T cells in neuromyelitis optica exhibit a Th17 bias and recognize Clostridium ABC transporter. Ann. Neurol. 72, 53–64 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Koga, M., Takahashi, T., Kawai, M., Fujihara, K. & Kanda, T. A serological analysis of viral and bacterial infections associated with neuromyelitis optica. J. Neurol. Sci. 300, 19–22 (2011).

    PubMed  Google Scholar 

  28. Shimizu, F. et al. Sera from neuromyelitis optica patients disrupt the blood-brain barrier. J. Neurol. Neurosurg. Psychiatry 83, 288–297 (2012).

    PubMed  Google Scholar 

  29. Jarius, S. et al. Cerebrospinal fluid antibodies to aquaporin-4 in neuromyelitis optica and related disorders: frequency, origin, and diagnostic relevance. J. Neuroinflammation 7, 52 (2010).

    PubMed  PubMed Central  Google Scholar 

  30. Kalluri, S. R. et al. Quantification and functional characterization of antibodies to native aquaporin 4 in neuromyelitis optica. Arch. Neurol. 67, 1201–1208 (2010).

    PubMed  Google Scholar 

  31. Chihara, N. et al. Plasmablasts as migratory IgG-producing cells in the pathogenesis of neuromyelitis optica. PLoS ONE 8, e83036 (2013).

    PubMed  PubMed Central  Google Scholar 

  32. Bradl, M. & Lassmann, D. H. Anti-aquaporin-4 antibodies in neuromyelitis optica: how to prove their pathogenetic relevance? Int. MS J. 15, 75–78 (2008).

    CAS  PubMed  Google Scholar 

  33. Saadoun, S. et al. Intra-cerebral injection of neuromyelitis optica immunoglobulin G. and human complement produces neuromyelitis optica lesions in mice. Brain 133, 349–361 (2010).

    PubMed  PubMed Central  Google Scholar 

  34. Bennett, J. L. et al. Intrathecal pathogenic anti-aquaporin-4 antibodies in early neuromyelitis optica. Ann. Neurol. 66, 617–629 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, H., Bennett, J. L. & Verkman, A. S. Ex vivo spinal cord slice model of neuromyelitis optica reveals novel immunopathogenic mechanisms. Ann. Neurol. 70, 943–954 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ratelade, J. et al. Neuromyelitis optica IgG and natural killer cells produce NMO lesions in mice without myelin loss. Acta Neuropathol. 123, 861–872 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Saadoun, S. et al. Neutrophil protease inhibition reduces neuromyelitis optica-immunoglobulin G-induced damage in mouse brain. Ann. Neurol. 71, 323–333 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ratelade, J. et al. Involvement of antibody-dependent cell-mediated cytotoxicity in inflammatory demyelination in a mouse model of neuromyelitis optica. Acta Neuropathol. 126, 699–709 (2013).

    PubMed  PubMed Central  Google Scholar 

  39. Wrzos, C. et al. Early loss of oligodendrocytes in human and experimental neuromyelitis optica lesions. Acta Neuropathol. 127, 523–538 (2014).

    CAS  PubMed  Google Scholar 

  40. Pohl, M. et al. T cell-activation in neuromyelitis optica lesions plays a role in their formation. Acta Neuropathol. Commun. 1, 85 (2013).

    PubMed  PubMed Central  Google Scholar 

  41. Saadoun, S., Bridges, L. R., Verkman, A. S. & Papadopoulos, M. C. Paucity of natural killer and cytotoxic T cells in human neuromyelitis optica lesions. Neuroreport 23, 1044–1047 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Saadoun, S. et al. T cell deficiency does not reduce lesions in mice produced by intracerebral injection of NMO-IgG and complement. J. Neuroimmunol. 235, 27–32 (2011).

    CAS  PubMed  Google Scholar 

  43. Hinson, S. R. et al. Aquaporin-4-binding autoantibodies in patients with neuromyelitis optica impair glutamate transport by down-regulating EAAT2. J. Exp. Med. 205, 2473–2481 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hinson, S. R. et al. Molecular outcomes of neuromyelitis optica (NMO)-IgG binding to aquaporin-4 in astrocytes. Proc. Natl Acad. Sci. USA 109, 1245–1250 (2012).

    CAS  PubMed  Google Scholar 

  45. Rossi, A., Ratelade, J., Papadopoulos, M. C., Bennett, J. L. & Verkman, A. S. Neuromyelitis optica IgG does not alter aquaporin-4 water permeability, plasma membrane M1/M23 isoform content, or supramolecular assembly. Glia 60, 2027–2039 (2012).

    PubMed  PubMed Central  Google Scholar 

  46. Ratelade, J., Bennett, J. L. & Verkman, A. S. Evidence against cellular internalization in vivo of NMO-IgG, aquaporin-4, and excitatory amino acid transporter 2 in neuromyelitis optica. J. Biol. Chem. 286, 45156–45164 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Faulkner, J. R. et al. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J. Neurosci. 24, 2143–2155 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Voskuhl, R. R. et al. Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS. J. Neurosci. 29, 11511–11522 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Trebst, C. et al. Update on the diagnosis and treatment of neuromyelitis optica: recommendations of the Neuromyelitis Optica Study Group (NEMOS). J. Neurol. 261, 1–16 (2014).

    CAS  PubMed  Google Scholar 

  50. Kimbrough, D. J. et al. Treatment of neuromyelitis optica: review and recommendations. Mult. Scler. Relat. Disord. 1, 180–187 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wingerchuk, D. M., Pittock, S. J., Lucchinetti, C. F., Lennon, V. A. & Weinshenker, B. G. A secondary progressive clinical course is uncommon in neuromyelitis optica. Neurology 68, 603–605 (2007).

    CAS  PubMed  Google Scholar 

  52. Barnes, P. J. Corticosteroids: the drugs to beat. Eur. J. Pharmacol. 533, 2–14 (2006).

    CAS  PubMed  Google Scholar 

  53. Linhares, U. C. et al. The ex vivo production of IL-6 and IL-21 by CD4+ T cells is directly associated with neurological disability in neuromyelitis optica patients. J. Clin. Immunol. 33, 179–189 (2013).

    CAS  PubMed  Google Scholar 

  54. Wang, H. H. et al. Interleukin-17-secreting T cells in neuromyelitis optica and multiple sclerosis during relapse. J. Clin. Neurosci. 18, 1313–1317 (2011).

    CAS  PubMed  Google Scholar 

  55. Muls, N. et al. Upregulation of IL-17, but not of IL-9, in circulating cells of CIS and relapsing MS patients. Impact of corticosteroid therapy on the cytokine network. J. Neuroimmunol. 243, 73–80 (2012).

    CAS  PubMed  Google Scholar 

  56. Reeves, H. M. & Winters, J. L. The mechanisms of action of plasma exchange. Br. J. Haematol. 164, 342–351 (2014).

    CAS  PubMed  Google Scholar 

  57. Bonnan, M. & Cabre, P. Plasma exchange in severe attacks of neuromyelitis optica. Mult. Scler. Int. 2012, 787630 (2012).

    PubMed  PubMed Central  Google Scholar 

  58. Bonnan, M. et al. Plasma exchange in severe spinal attacks associated with neuromyelitis optica spectrum disorder. Mult. Scler. 15, 487–492 (2009).

    CAS  PubMed  Google Scholar 

  59. Keegan, M. et al. Plasma exchange for severe attacks of CNS demyelination: predictors of response. Neurology 58, 143–146 (2002).

    CAS  PubMed  Google Scholar 

  60. Merle, H. et al. Treatment of optic neuritis by plasma exchange (add-on) in neuromyelitis optica. Arch. Ophthalmol. 130, 858–862 (2012).

    PubMed  Google Scholar 

  61. Elsone, L. et al. Role of intravenous immunoglobulin in the treatment of acute relapses of neuromyelitis optica: experience in 10 patients. Mult. Scler. 20, 501–504 (2014).

    CAS  PubMed  Google Scholar 

  62. Greenberg, B. M. et al. Idiopathic transverse myelitis: corticosteroids, plasma exchange, or cyclophosphamide. Neurology 68, 1614–1617 (2007).

    CAS  PubMed  Google Scholar 

  63. Kitley, J. et al. Prognostic factors and disease course in aquaporin-4 antibody-positive patients with neuromyelitis optica spectrum disorder from the United Kingdom and Japan. Brain 135, 1834–1849 (2012).

    PubMed  Google Scholar 

  64. Watanabe, S. et al. Low-dose corticosteroids reduce relapses in neuromyelitis optica: a retrospective analysis. Mult. Scler. 13, 968–974 (2007).

    CAS  PubMed  Google Scholar 

  65. Miyamoto, K. & Kusunoki, S. Intermittent plasmapheresis prevents recurrence in neuromyelitis optica. Ther. Apher. Dial. 13, 505–508 (2009).

    PubMed  Google Scholar 

  66. Costanzi, C. et al. Azathioprine: tolerability, efficacy, and predictors of benefit in neuromyelitis optica. Neurology 77, 659–666 (2011).

    CAS  PubMed  Google Scholar 

  67. Bichuetti, D. B., Lobato de Oliveira, E. M., Oliveira, D. M., Amorin de Souza, N. & Gabbai, A. A. Neuromyelitis optica treatment: analysis of 36 patients. Arch. Neurol. 67, 1131–1136 (2010).

    PubMed  Google Scholar 

  68. Sahraian, M. A., Moinfar, Z., Khorramnia, S. & Ebrahim, M. M. Relapsing neuromyelitis optica: demographic and clinical features in Iranian patients. Eur. J. Neurol. 17, 794–799 (2010).

    CAS  PubMed  Google Scholar 

  69. Jacob, A. et al. Treatment of neuromyelitis optica with mycophenolate mofetil: retrospective analysis of 24 patients. Arch. Neurol. 66, 1128–1133 (2009).

    PubMed  Google Scholar 

  70. Kitley, J. et al. Methotrexate is an alternative to azathioprine in neuromyelitis optica spectrum disorders with aquaporin-4 antibodies. J. Neurol. Neurosurg. Psychiatry 84, 918–921 (2013).

    PubMed  Google Scholar 

  71. Kim, S.-H. et al. Efficacy and safety of mitoxantrone in patients with highly relapsing neuromyelitis optica. Arch. Neurol. 68, 473–479 (2010).

    PubMed  Google Scholar 

  72. Yaguchi, H. et al. Efficacy of intravenous cyclophosphamide therapy for neuromyelitis optica spectrum disorder. Intern. Med. 52, 969–972 (2013).

    CAS  PubMed  Google Scholar 

  73. Bichuetti, D. B., Oliveira, E. M., Boulos Fde, C. & Gabbai, A. A. Lack of response to pulse cyclophosphamide in neuromyelitis optica: evaluation of 7 patients. Arch. Neurol. 69, 938–939 (2012).

    PubMed  Google Scholar 

  74. Cree, B. A. et al. An open label study of the effects of rituximab in neuromyelitis optica. Neurology 64, 1270–1272 (2005).

    CAS  PubMed  Google Scholar 

  75. Jacob, A. et al. Treatment of neuromyelitis optica with rituximab: retrospective analysis of 25 patients. Arch. Neurol. 65, 1443–1448 (2008).

    PubMed  Google Scholar 

  76. Kim, S.-H., Kim, W., Li, X. F., Jung, I.-J. & Kim, H. J. Repeated treatment with rituximab based on the assessment of peripheral circulating memory B cells in patients with relapsing neuromyelitis optica over 2 years. Arch. Neurol. 68, 1412–1420 (2011).

    PubMed  Google Scholar 

  77. Bedi, G. S. et al. Impact of rituximab on relapse rate and disability in neuromyelitis optica. Mult. Scler. 17, 1225–1230 (2011).

    CAS  PubMed  Google Scholar 

  78. Kim, S.-H., Huh, S.-Y., Lee, S. J., Joung, A. & Kim, H. J. A 5-year follow-up of rituximab treatment in patients with neuromyelitis optica spectrum disorder. JAMA Neurol. 70, 1110–1117 (2013).

    PubMed  Google Scholar 

  79. Greenberg, B. M. et al. Rituximab dosing and monitoring strategies in neuromyelitis optica patients: creating strategies for therapeutic success. Mult. Scler. 18, 1022–1026 (2012).

    PubMed  Google Scholar 

  80. Jarius, S. et al. Antibody to aquaporin-4 in the long-term course of neuromyelitis optica. Brain 131, 3072–3080 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Pellkofer, H. L. et al. Long-term follow-up of patients with neuromyelitis optica after repeated therapy with rituximab. Neurology 76, 1310–1315 (2011).

    CAS  PubMed  Google Scholar 

  82. Kim, S. H., Huh, S. Y., Lee, S. J., Joung, A. & Kim, H. J. A 5-year follow-up of rituximab treatment in patients with neuromyelitis optica spectrum disorder. JAMA Neurol. 70, 1110–1117 (2013).

    PubMed  Google Scholar 

  83. Carson, K. R. et al. Monoclonal antibody-associated progressive multifocal leucoencephalopathy in patients treated with rituximab, natalizumab, and efalizumab: a Review from the Research on Adverse Drug Events and Reports (RADAR) Project. Lancet Oncol. 10, 816–824 (2009).

    CAS  PubMed  Google Scholar 

  84. Kageyama, T. et al. Combination of cyclosporine A with corticosteroids is effective for the treatment of neuromyelitis optica. J. Neurol. 260, 627–634 (2013).

    CAS  PubMed  Google Scholar 

  85. Bourre, B. et al. Neuromyelitis optica and pregnancy. Neurology 78, 875–879 (2012).

    CAS  PubMed  Google Scholar 

  86. Kim, W. et al. Influence of pregnancy on neuromyelitis optica spectrum disorder. Neurology 78, 1264–1267 (2012).

    CAS  PubMed  Google Scholar 

  87. Ringelstein, M. et al. Neuromyelitis optica and pregnancy during therapeutic B cell depletion: infant exposure to anti-AQP4 antibody and prevention of rebound relapses with low-dose rituximab postpartum. Mult. Scler. 19, 1544–1547 (2013).

    CAS  PubMed  Google Scholar 

  88. Wen, H. et al. Ontogeny of water transport in rat brain: postnatal expression of the aquaporin-4 water channel. Eur. J. Neurosci. 11, 935–945 (1999).

    CAS  PubMed  Google Scholar 

  89. Gomori, E. et al. Fetal development of membrane water channel proteins aquaporin-1 and aquaporin-4 in the human brain. Int. J. Dev. Neurosci. 24, 295–305 (2006).

    CAS  PubMed  Google Scholar 

  90. Saadoun, S. et al. Neuromyelitis optica IgG causes placental inflammation and fetal death. J. Immunol. 191, 2999–3005 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Damiano, A. E. Review: water channel proteins in the human placenta and fetal membranes. Placenta 32 (Suppl. 2), S207–S211 (2011).

    PubMed  Google Scholar 

  92. De Falco, M. et al. Down-regulation of aquaporin 4 in human placenta throughout pregnancy. In Vivo 21, 813–817 (2007).

    PubMed  Google Scholar 

  93. Reuss, R. et al. A woman with acute myelopathy in pregnancy: case outcome. BMJ 339, b4026 (2009).

    PubMed  Google Scholar 

  94. Fragoso, Y. D. et al. Neuromyelitis optica and pregnancy. J. Neurol. 260, 2614–2619 (2013).

    PubMed  Google Scholar 

  95. Pellkofer, H. L., Suessmair, C., Schulze, A., Hohlfeld, R. & Kuempfel, T. Course of neuromyelitis optica during inadvertent pregnancy in a patient treated with rituximab. Mult. Scler. 15, 1006–1008 (2009).

    CAS  PubMed  Google Scholar 

  96. Yuksel, D., Senbil, N., Yilmaz, D. & Yavuz Gurer, Y. K. Devic's neuromyelitis optica in an infant case. J. Child. Neurol. 22, 1143–1146 (2007).

    PubMed  Google Scholar 

  97. Tillema, J. M. & McKeon, A. The spectrum of neuromyelitis optica (NMO) in childhood. J. Child. Neurol. 27, 1437–1447 (2012).

    CAS  PubMed  Google Scholar 

  98. McKeon, A. et al. CNS aquaporin-4 autoimmunity in children. Neurology 71, 93–100 (2008).

    CAS  PubMed  Google Scholar 

  99. Lotze, T. E. et al. Spectrum of pediatric neuromyelitis optica. Pediatrics 122, e1039–e1047 (2008).

    PubMed  Google Scholar 

  100. Huppke, P. et al. Neuromyelitis optica and NMO-IgG in European pediatric patients. Neurology 75, 1740–1804 (2010).

    CAS  PubMed  Google Scholar 

  101. Kim, S.-H., Kim, W., Li, X. F., Jung, I.-J. & Kim, H. J. Does interferon beta treatment exacerbate neuromyelitis optica spectrum disorder? Mult. Scler. 18, 1480–1483 (2012).

    PubMed  Google Scholar 

  102. Palace, J., Leite, M. I., Nairne, A. & Vincent, A. Interferon beta treatment in neuromyelitis optica: increase in relapses and aquaporin 4 antibody titers. Arch. Neurol. 67, 1016–1017 (2010).

    PubMed  Google Scholar 

  103. Shimizu, J. et al. IFNβ-1b may severely exacerbate Japanese optic-spinal MS in neuromyelitis optica spectrum. Neurology 75, 1423–1427 (2010).

    CAS  PubMed  Google Scholar 

  104. Warabi, Y., Matsumoto, Y. & Hayashi, H. Interferon beta-1b exacerbates multiple sclerosis with severe optic nerve and spinal cord demyelination. J. Neurol. Sci. 252, 57–61 (2007).

    CAS  PubMed  Google Scholar 

  105. Axtell, R. C., Raman, C. & Steinman, L. Type I interferons: beneficial in Th1 and detrimental in Th17 autoimmunity. Clin. Rev. Allergy Immunol. 44, 114–120 (2012).

    Google Scholar 

  106. Kleiter, I. et al. Failure of natalizumab to prevent relapses in neuromyelitis optica. Arch. Neurol. 69, 239–245 (2012).

    PubMed  Google Scholar 

  107. Barnett, M., Prineas, J., Buckland, M., Parratt, J. & Pollard, J. Massive astrocyte destruction in neuromyelitis optica despite natalizumab therapy. Mult. Scler. 18, 108–112 (2012).

    CAS  PubMed  Google Scholar 

  108. Kitley, J. et al. Catastrophic brain relapse in seronegative NMO after a single dose of natalizumab. J. Neurol. Sci. 339, 223–225 (2014).

    PubMed  Google Scholar 

  109. Kleiter, I. et al. Failure of natalizumab to prevent relapses in neuromyelitis optica. Arch. Neurol. 69, 239–245 (2012).

    PubMed  Google Scholar 

  110. Polman, C. H. et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 354, 899–910 (2006).

    CAS  PubMed  Google Scholar 

  111. Lucchinetti, C. F. et al. A role for humoral mechanisms in the pathogenesis of Devic's neuromyelitis optica. Brain 125, 1450–1461 (2002).

    PubMed  PubMed Central  Google Scholar 

  112. Zhang, H. & Verkman, A. S. Eosinophil pathogenicity mechanisms and therapeutics in neuromyelitis optica. J. Clin. Invest. 123, 2306–2316 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Chu, V. T. et al. Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nat. Immunol. 12, 151–159 (2011).

    CAS  PubMed  Google Scholar 

  114. Min, J. H., Kim, B. J. & Lee, K. H. Development of extensive brain lesions following fingolimod (FTY720) treatment in a patient with neuromyelitis optica spectrum disorder. Mult. Scler. 18, 113–115 (2012).

    CAS  PubMed  Google Scholar 

  115. Izaki, S. et al. A case of neuromyelitis optica spectrum disorder developing a fulminant course with multiple white-matter lesions following fingolimod treatment [Japanese]. Rinsho Shinkeigaku 53, 513–517 (2013).

    PubMed  Google Scholar 

  116. Sugita, K. et al. FTY720 regulates bone marrow egress of eosinophils and modulates late-phase skin reaction in mice. Am. J. Pathol. 177, 1881–1887 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Pittock, S. J. et al. Eculizumab in AQP4-IgG-positive relapsing neuromyelitis optica spectrum disorders: an open-label pilot study. Lancet Neurol. 12, 554–562 (2013).

    CAS  PubMed  Google Scholar 

  118. Chihara, N. et al. Interleukin 6 signaling promotes anti-aquaporin 4 autoantibody production from plasmablasts in neuromyelitis optica. Proc. Natl Acad. Sci. USA 108, 3701–3706 (2011).

    CAS  PubMed  Google Scholar 

  119. Uzawa, A. et al. Cerebrospinal fluid interleukin-6 and glial fibrillary acidic protein levels are increased during initial neuromyelitis optica attacks. Clin. Chim. Acta 421, 181–183 (2013).

    CAS  PubMed  Google Scholar 

  120. Wang, H. et al. Notable increased cerebrospinal fluid levels of soluble interleukin-6 receptors in neuromyelitis optica. Neuroimmunomodulation 19, 304–308 (2012).

    PubMed  Google Scholar 

  121. Araki, M. et al. Clinical improvement in a patient with neuromyelitis optica following therapy with the anti-IL-6 receptor monoclonal antibody tocilizumab. Mod. Rheumatol 23, 827–831 (2013).

    CAS  PubMed  Google Scholar 

  122. Ayzenberg, I. et al. Interleukin 6 receptor blockade in patients with neuromyelitis optica nonresponsive to anti-CD20 therapy. JAMA Neurol. 70, 394–397 (2013).

    PubMed  Google Scholar 

  123. Kieseier, B. C. et al. Disease amelioration with tocilizumab in a treatment-resistant patient with neuromyelitis optica: implication for cellular immune responses. JAMA Neurol. 70, 390–393 (2013).

    PubMed  Google Scholar 

  124. Komai, T. et al. Neuromyelitis optica spectrum disorder complicated with Sjogren syndrome successfully treated with tocilizumab: a case report. Mod. Rheumatol http://dx.doi.org/10.3109/14397595.2013.861333.

  125. Asavapanumas, N., Ratelade, J. & Verkman, A. S. Unique neuromyelitis optica pathology produced in naive rats by intracerebral administration of NMO-IgG. Acta Neuropathol. 127, 539–551 (2014).

    CAS  PubMed  Google Scholar 

  126. Jarius, S. et al. Cerebrospinal fluid findings in aquaporin-4 antibody positive neuromyelitis optica: results from 211 lumbar punctures. J. Neurol. Sci. 306, 82–90 (2011).

    CAS  PubMed  Google Scholar 

  127. Jacob, A. et al. Detrimental role of granulocyte-colony stimulating factor in neuromyelitis optica: clinical case and histological evidence. Mult. Scler. 18, 1801–1803 (2012).

    PubMed  Google Scholar 

  128. Young, R. E. et al. Neutrophil elastase (NE)-deficient mice demonstrate a nonredundant role for NE in neutrophil migration, generation of proinflammatory mediators, and phagocytosis in response to zymosan particles in vivo. J. Immunol. 172, 4493–4502 (2004).

    CAS  PubMed  Google Scholar 

  129. Papayannopoulos, V., Metzler, K. D., Hakkim, A. & Zychlinsky, A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J. Cell Biol. 191, 677–691 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Iwata, K. et al. Effect of neutrophil elastase inhibitor (sivelestat sodium) in the treatment of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS): a systematic review and meta-analysis. Intern. Med. 49, 2423–2432 (2010).

    PubMed  Google Scholar 

  131. Kawabata, K. et al. ONO-5046, a novel inhibitor of human neutrophil elastase. Biochem. Biophys. Res. Commun. 177, 814–820 (1991).

    CAS  PubMed  Google Scholar 

  132. Kita, H. Eosinophils: multifaceted biological properties and roles in health and disease. Immunol. Rev. 242, 161–177 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Imbach, P. et al. High-dose intravenous gammaglobulin for idiopathic thrombocytopenic purpura in childhood. Lancet 1, 1228–1231 (1981).

    CAS  PubMed  Google Scholar 

  134. Gelfand, E. W. Intravenous immune globulin in autoimmune and inflammatory diseases. N. Engl. J. Med. 367, 2015–2025 (2012).

    CAS  PubMed  Google Scholar 

  135. Jacob, S. & Rajabally, Y. A. Current proposed mechanisms of action of intravenous immunoglobulins in inflammatory neuropathies. Curr. Neuropharmacol. 7, 337–342 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Magraner, M. J., Coret, F. & Casanova, B. The effect of intravenous immunoglobulin on neuromyelitis optica. Neurologia 28, 65–72 (2013).

    CAS  PubMed  Google Scholar 

  137. Bakker, J. & Metz, L. Devic's neuromyelitis optica treated with intravenous gamma globulin (IVIG). Can. J. Neurol. Sci. 31, 265–267 (2004).

    PubMed  Google Scholar 

  138. Okada, K., Tsuji, S. & Tanaka, K. Intermittent intravenous immunoglobulin successfully prevents relapses of neuromyelitis optica. Intern. Med. 46, 1671–1672 (2007).

    PubMed  Google Scholar 

  139. Ratelade, J., Smith, A. J. & Verkman, A. S. Intravenous immunoglobulin (IVIg) reduces the pathogenicity of aquaporin-4 autoantibodies in neuromyelitis optica. Exp. Neurol. 255, 145–153 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Tedder, T. F. CD19: a promising B cell target for rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 572–577 (2009).

    CAS  PubMed  Google Scholar 

  141. Hammer, O. CD19 as an attractive target for antibody-based therapy. MAbs 4, 571–577 (2012).

    PubMed  PubMed Central  Google Scholar 

  142. Kim, S., Steelman, A. J., Koito, H. & Li, J. Astrocytes promote TNF-mediated toxicity to oligodendrocyte precursors. J. Neurochem. 116, 53–66 (2011).

    CAS  PubMed  Google Scholar 

  143. Pentón-Rol, G. et al. TNF-α and IL-10 downregulation and marked oxidative stress in neuromyelitis optica. J. Inflamm. (Lond.) 6, 18 (2009).

    Google Scholar 

  144. Tradtrantip, L. et al. Anti-aquaporin-4 monoclonal antibody blocker therapy for neuromyelitis optica. Ann. Neurol. 71, 314–322 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Tradtrantip, L. et al. Small-molecule inhibitors of NMO-IgG binding to aquaporin-4 reduce astrocyte cytotoxicity in neuromyelitis optica. FASEB J. 26, 2197–2208 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Phuan, P. W. et al. A small-molecule screen yields idiotype-specific blockers of neuromyelitis optica immunoglobulin G binding to aquaporin-4. J. Biol. Chem. 287, 36837–36844 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Crane, J. M. et al. Binding affinity and specificity of neuromyelitis optica autoantibodies to aquaporin-4 M1/M23 isoforms and orthogonal arrays. J. Biol. Chem. 286, 16516–16524 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Phuan, P. W., Ratelade, J., Rossi, A., Tradtrantip, L. & Verkman, A. S. Complement-dependent cytotoxicity in neuromyelitis optica requires aquaporin-4 protein assembly in orthogonal arrays. J. Biol. Chem. 287, 13829–13839 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Jarius, S. & Wildemann, B. Aquaporin-4 antibodies, CNS acidosis and neuromyelitis optica: a potential link. Med. Hypotheses 81, 1090–1095 (2013).

    CAS  PubMed  Google Scholar 

  150. Warth, A. Prevention of orthogonal array of particles formation as a treatment approach for neuromyelitis optica. Med. Hypotheses 73, 361–362 (2009).

    CAS  PubMed  Google Scholar 

  151. Collin, M. & Olsen, A. EndoS, a novel secreted protein from Streptococcus pyogenes with endoglycosidase activity on human IgG. EMBO J. 20, 3046–3055 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Tradtrantip, L., Ratelade, J., Zhang, H. & Verkman, A. S. Enzymatic deglycosylation converts pathogenic neuromyelitis optica anti-aquaporin-4 immunoglobulin G. into therapeutic antibody. Ann. Neurol. 73, 77–85 (2013).

    CAS  PubMed  Google Scholar 

  153. Tradtrantip, L., Asavapanumas, N. & Verkman, A. S. Therapeutic cleavage of anti-aquaporin-4 autoantibody in neuromyelitis optica by an IgG-selective proteinase. Mol. Pharmacol. 83, 1268–1275 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Lewis, L. A. & Ram, S. Meningococcal disease and the complement system. Virulence 5, 98–126 (2014).

    PubMed  Google Scholar 

  155. Phuan, P. W. et al. C1q-targeted monoclonal antibody prevents complement-dependent cytotoxicity and neuropathology in in vitro and mouse models of neuromyelitis optica. Acta Neuropathol. 125, 829–840 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Ricklin, D. & Lambris, J. D. Complement-targeted therapeutics. Nat. Biotechnol. 25, 1265–1275 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Ricklin, D. & Lambris, J. D. Progress and trends in complement therapeutics. Adv. Exp. Med. Biol. 735, 1–22 (2013).

    CAS  PubMed  Google Scholar 

  158. Davies, A. & Lachmann, P. J. Membrane defence against complement lysis: the structure and biological properties of CD59. Immunol. Res. 12, 258–275 (1993).

    CAS  PubMed  Google Scholar 

  159. Zipfel, P. F. & Skerka, C. Complement regulators and inhibitory proteins. Nat. Rev. Immunol. 9, 729–740 (2009).

    CAS  PubMed  Google Scholar 

  160. Botto, M. et al. Complement in human diseases: lessons from complement deficiencies. Mol. Immunol. 46, 2774–2783 (2009).

    CAS  PubMed  Google Scholar 

  161. Asavapanumas, N. et al. Experimental mouse model of optic neuritis with inflammatory demyelination produced by passive transfer of neuromyelitis optica-immunoglobulin G. J. Neuroinflammation 11, 16 (2014).

    PubMed  PubMed Central  Google Scholar 

  162. Zhang, H. & Verkman, A. S. Longitudinally extensive NMO spinal cord pathology produced by passive transfer of NMO-IgG in mice lacking complement inhibitor CD59. J. Autoimmun. http://dx.doi.org/10.1016/j.jaut.2014.02.011.

  163. Vincent, T. et al. Functional consequences of neuromyelitis optica-IgG astrocyte interactions on blood–brain barrier permeability and granulocyte recruitment. J. Immunol. 181, 5730–5737 (2008).

    CAS  PubMed  Google Scholar 

  164. Mihai, S. & Nimmerjahn, F. The role of Fc receptors and complement in autoimmunity. Autoimmun. Rev. 12, 657–660 (2013).

    CAS  PubMed  Google Scholar 

  165. Hosokawa, T. et al. Increased serum matrix metalloproteinase-9 in neuromyelitis optica: implication of disruption of blood-brain barrier. J. Neuroimmunol. 236, 81–86 (2011).

    CAS  PubMed  Google Scholar 

  166. Bluestone, J. A. & Bour-Jordan, H. Current and future immunomodulation strategies to restore tolerance in autoimmune diseases. Cold Spring Harb. Perspect. Biol. 4 (2012).

  167. Bar-Or, A. et al. Induction of antigen-specific tolerance in multiple sclerosis after immunization with DNA encoding myelin basic protein in a randomized, placebo-controlled phase 1/2 trial. Arch. Neurol. 64, 1407–1415 (2007).

    PubMed  Google Scholar 

  168. Faria, A. M. C. & Weiner, H. L. Oral tolerance: therapeutic implications for autoimmune diseases. Clin. Dev. Immunol. 13, 143–157 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Bielekova, B. et al. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat. Med. 6, 1167–1175 (2000).

    CAS  PubMed  Google Scholar 

  170. Fagius, J., Lundgren, J. & Oberg, G. Early highly aggressive MS successfully treated by hematopoietic stem cell transplantation. Mult. Scler. 15, 229–237 (2008).

    PubMed  Google Scholar 

  171. Illei, G. G. et al. Current state and future directions of autologous hematopoietic stem cell transplantation in systemic lupus erythematosus. Ann. Rheum. Dis. 70, 2071–2074 (2011).

    PubMed  PubMed Central  Google Scholar 

  172. Mader, S. et al. Complement activating antibodies to myelin oligodendrocyte glycoprotein in neuromyelitis optica and related disorders. J. Neuroinflammation 8, 184 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Kitley, J. et al. Longitudinally extensive transverse myelitis with and without aquaporin 4 antibodies. JAMA Neurol. 70, 1375–1381 (2013).

    PubMed  Google Scholar 

  174. Kitley, J. et al. Neuromyelitis optica spectrum disorders with aquaporin-4 and myelin-oligodendrocyte glycoprotein antibodies: a comparative study. JAMA Neurol. 71, 276–283 (2014).

    PubMed  Google Scholar 

  175. Kitley, J. et al. Myelin-oligodendrocyte glycoprotein antibodies in adults with a neuromyelitis optica phenotype. Neurology 79, 1273–1277 (2012).

    CAS  PubMed  Google Scholar 

  176. Rostasy, K. et al. Persisting myelin oligodendrocyte glycoprotein antibodies in aquaporin-4 antibody negative pediatric neuromyelitis optica. Mult. Scler. 19, 1052–1059 (2013).

    CAS  PubMed  Google Scholar 

  177. Sato, D. K. et al. Distinction between MOG antibody-positive and AQP4 antibody-positive NMO spectrum disorders. Neurology 82, 474–481 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Reindl, M., Di Pauli, F., Rostasy, K. & Berger, T. The spectrum of MOG autoantibody-associated demyelinating diseases. Nat. Rev. Neurol. 9, 455–461 (2013).

    CAS  PubMed  Google Scholar 

  179. Saadoun, S. et al. Neuromyelitis optica MOG-IgG causes reversible lesions in mouse brain. Acta Neuropathol. Commun. 2, 35 (2014).

    PubMed  PubMed Central  Google Scholar 

  180. Mealy, M. A., Wingerchuk, D. M., Palace, J., Greenberg, B. M. & Levy, M. Comparison of relapse and treatment failure rates among patients with neuromyelitis optica: multicenter study of treatment efficacy. JAMA Neurol. 71, 324–330 (2014).

    PubMed  Google Scholar 

  181. Pellkofer, H. L. et al. Long-term follow-up of patients with neuromyelitis optica after repeated therapy with rituximab. Neurology 76, 1310–1315 (2011).

    CAS  PubMed  Google Scholar 

  182. Weinstock-Guttman, B. et al. Study of mitoxantrone for the treatment of recurrent neuromyelitis optica (Devic disease). Arch. Neurol. 63, 957–963 (2006).

    PubMed  Google Scholar 

  183. Li, Y., Wang, H., Long, Y., Lu, Z. & Hu, X. Increased memory Th17 cells in patients with neuromyelitis optica and multiple sclerosis. J. Neuroimmunol. 234, 155–160 (2011).

    CAS  PubMed  Google Scholar 

  184. Raveendra, B. L. et al. Discovery of peptoid ligands for anti-aquaporin 4 antibodies. Chem. Biol. 20, 351–359 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.C.P., J.L.B. and A.S.V. have received funding from the Guthy-Jackson Charitable Foundation, and J.L.B. and A.S.V. have received funding from the NIH.

Author information

Authors and Affiliations

Authors

Contributions

All three authors researched the data for the article, provided substantial contributions to discussions of the content, and wrote the article.

Corresponding author

Correspondence to Marios C. Papadopoulos.

Ethics declarations

Competing interests

M.C.P. has received consulting income from ONO Pharmaceutical. J.L.B. has received consulting income from MedImmune and Chugai Pharmaceuticals. He has a patent application on aquaporumab technology and is a member of the board of directors of Apsara Therapeutics. A.S.V. has patent applications on aquaporumab and EndoS technology and is a member of the board of directors of Apsara Therapeutics.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papadopoulos, M., Bennett, J. & Verkman, A. Treatment of neuromyelitis optica: state-of-the-art and emerging therapies. Nat Rev Neurol 10, 493–506 (2014). https://doi.org/10.1038/nrneurol.2014.141

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2014.141

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing