Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Tubular toxicity of proteinuria

Abstract

Proteinuria is a prognostic indicator of progressive kidney disease and poor cardiovascular outcomes. Abnormally filtered bioactive macromolecules interact with proximal tubular epithelial cells (PTECs), which results in the development of proteinuric nephropathy. This condition is characterized by alterations in PTEC growth, apoptosis, gene transcription and inflammatory cytokine production as a consequence of dysregulated signaling pathways that are stimulated by proteinuric tubular fluid. The megalin–cubilin complex mediates the uptake of several proteins, including albumin, into PTECs. Megalin might also possess intrinsic signaling properties and the ability to regulate cell signaling pathways and gene transcription after processing regulated intramembrane proteolysis. Megalin could, therefore, link abnormal PTEC albumin exposure with altered growth factor receptor activation, proinflammatory and profibrotic signaling, and gene transcription. Evidence now suggests that other PTEC pathways for protein reabsorption of (patho)physiological importance might be mediated by the neonatal Fc receptor and CD36.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potential events leading to EGF-R activation after albumin binding to PTECs.

Similar content being viewed by others

References

  1. Baines, R. J. & Brunskill, N. J. The molecular interactions between filtered proteins and proximal tubular cells in proteinuria. Nephron Exp. Nephrol. 110, 67–71 (2008).

    Article  Google Scholar 

  2. Brunskill, N. J. Albumin signals the age of proteinuric nephropathy. J. Am. Soc. Nephrol. 15, 504–505 (2004).

    Article  Google Scholar 

  3. Christensen, E. I., Verroust, P. J. & Nielsen, R. Receptor-mediated endocytosis in renal proximal tubule. Pflugers Arch. 485, 1039–1048 (2009).

    Article  Google Scholar 

  4. Willnow, T. E. et al. Defective forebrain development in mice lacking gp330/megalin. Proc. Natl Acad. Sci. USA 93, 8460–8464 (1996).

    Article  CAS  Google Scholar 

  5. Leheste, J. R. et al. Hypocalcaemia and osteopathy in mice with kidney-specific megalin gene defect. FASEB J. 17, 247–249 (2003).

    Article  CAS  Google Scholar 

  6. Lillis, A. P., Van Duyn, L. B., Murphy-Ullrich, J. E. & Strickland, D. K. LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Physiol. Rev. 88, 887–918 (2008).

    Article  CAS  Google Scholar 

  7. Yuseff, M. I., Farfan, P., Bu, G. & Marzolo, M. P. A cytoplasmic PPPSP motif determines megalin's phosphorylation and regulates receptor's recycling and surface expression. Traffic 8, 1215–1230 (2007).

    Article  CAS  Google Scholar 

  8. Biemesderfer, D. Regulated intramembrane proteolysis of megalin: linking urinary protein and gene regulation in proximal tubule? Kidney Int. 69, 1717–1721 (2006).

    Article  CAS  Google Scholar 

  9. Li, Y., Cong, R. & Biemesderfer, D. The COOH terminus of megalin regulates gene expression in opossum kidney proximal tubular cells. Am. J. Physiol. Cell Physiol. 295, C529–C537 (2008).

    Article  CAS  Google Scholar 

  10. Thrailkill, K. M. et al. Microalbuminuria in type 1 diabetes mellitus is associated with enhanced excretion of the endocytic, multiligand receptor megalin and cubilin. Diabetes Care 32, 1266–1268 (2009).

    Article  CAS  Google Scholar 

  11. Terzi, F. et al. Targeted expression of a dominant-negative EGF-R in the kidney reduces tubule-interstitial lesions after renal injury. J. Clin. Invest. 106, 225–234 (2000).

    Article  CAS  Google Scholar 

  12. Reich, H. et al. Albumin activates ERK via EGF receptor in human renal epithelial cells. J. Am. Soc. Nephrol. 16, 1266–1278 (2005).

    Article  CAS  Google Scholar 

  13. Gesualdo, L. et al. Expression of epidermal growth factor and its receptor in normal and diseased human kidney: an immunohistochemical and in situ hybridization study. Kidney Int. 49, 656–665 (1996).

    Article  CAS  Google Scholar 

  14. Shi, Y., Mantuano, E., Inoue, G., Campana, W. M. & Gonias, S. L. Ligand binding to LRP1 transactivates Trk receptors by a Src family kinase-dependent pathway. Sci. Signal. 2, ra18 (2009).

    Article  Google Scholar 

  15. Caruso-Neves, C. et al. PKB and megalin determine the survival or death of renal proximal tubule cells. Proc. Natl Acad. Sci. USA 103, 18810–18815 (2006).

    Article  CAS  Google Scholar 

  16. Takase, O. et al. Inhibition of NF-κB-dependent Bcl-xL expression by clusterin promotes albumin-induced tubular cell apoptosis. Kidney Int. 73, 567–577 (2008).

    Article  CAS  Google Scholar 

  17. Theilig, F. et al. Abrogation of protein uptake through megalin-deficient proximal tubules does not safeguard against tubulointerstitial injury. J. Am. Soc. Nephrol. 18, 1824–1834 (2007).

    Article  CAS  Google Scholar 

  18. Motoyoshi, Y. et al. Megalin contributes to the early injury of proximal tubular cells during nonselective proteinuria. Kidney Int. 74, 1262–1269 (2008).

    Article  CAS  Google Scholar 

  19. Roopenian, D. C. & Akilesh, S. FcRn: the neonatal Fc receptor comes of age. Nat. Rev. Immunol. 7, 715–725 (2007).

    Article  CAS  Google Scholar 

  20. Haymann, J. P. et al. Characterization and localization of the neonatal Fc receptor in adult human kidney. J. Am. Soc. Nephrol. 11, 632–639 (2000).

    CAS  PubMed  Google Scholar 

  21. Sarav, M. et al. Renal FcRn reclaims albumin but facilitates elimination of IgG. J. Am. Soc. Nephrol. 20, 1941–1952 (2009).

    Article  CAS  Google Scholar 

  22. Febbraio, M. et al. A null mutation in murine CD36 reveals an important role in fatty acid and lipoprotein metabolism. J. Biol. Chem. 274, 19055–19062 (1999).

    Article  CAS  Google Scholar 

  23. Susztak, K., Ciccone, E., McCue, P., Sharma, K. & Böttinger, E. P. Multiple metabolic hits converge on CD36 as novel mediator of tubular epithelial apoptosis in diabetic nephropathy. PLoS Med. 2, e45 (2005).

    Article  Google Scholar 

  24. Iwao, Y. et al. CD36 is one of important receptors promoting renal tubular injury by advanced glycation end products. Am. J. Physiol. Renal Physiol. 295, F1871–F1880 (2008).

    Article  CAS  Google Scholar 

  25. Okamura, D. M., López-Guisa, J., Koelsch, K., Collins, S. & Eddy, A. A. Atherogenic scavenger receptor modulation in the tubulointerstitium in response to chronic renal injury. Am. J. Physiol. Renal Physiol. 293, F575–F585 (2007).

    Article  CAS  Google Scholar 

  26. Yang, Y.-L. et al. CD36 is a novel and potential anti-fibrogenic target in albumin-induced renal proximal tubule fibrosis. J. Cell. Biochem. 101, 735–744 (2007).

    Article  CAS  Google Scholar 

  27. Okamura, D. M. et al. CD36 regulates oxidative stress and inflammation in hypercholesterolemic CKD. J. Am. Soc. Nephrol. 20, 495–505 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

R. J. Baines and N. J. Brunskill contributed equally to researching data for the article, discussing content, writing and reviewing/editing the manuscript before submission.

Corresponding author

Correspondence to Nigel J. Brunskill.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baines, R., Brunskill, N. Tubular toxicity of proteinuria. Nat Rev Nephrol 7, 177–180 (2011). https://doi.org/10.1038/nrneph.2010.174

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2010.174

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing