Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The growing problem of intradialytic hypertension

Abstract

Intradialytic hypertension is not a rare complication of dialysis, with a prevalence of 5–15% among hemodialysis patients, and it seems to be associated with adverse outcomes. This complex phenomenon is not well understood, and many uncertainties exist regarding its pathophysiologic mechanisms and appropriate treatment strategies. Mechanisms that might be involved in the pathogenesis of intradialytic hypertension include extracellular volume overload, increased cardiac output, changes in electrolyte levels (particularly sodium), activation of the renin–angiotensin–aldosterone system, overactivity of the sympathetic nervous system, and endothelial cell dysfunction. Most current treatment strategies are based only on expert opinion and not on the results of randomized clinical trials, as very little data on the therapy of intradialytic hypertension are available. The most important treatment is adequate sodium and water removal, but reducing sympathetic hyperactivity and reducing endothelin-1 levels should also be considered. Well-designed, randomized clinical trials are urgently needed to better understand the pathophysiologic mechanisms of this complex phenomenon and to improve its diagnosis, prognosis and treatment.

Key Points

  • Intradialytic hypertension has a prevalence of 5–15% among patients on hemodialysis and seems to be associated with adverse outcomes

  • Mechanisms potentially involved in the onset of intradialytic hypertension include extracellular volume overload, increased cardiac output, changes in electrolyte levels, activation of the renin–angiotensin–aldosterone system and the sympathetic nervous system, and endothelial cell dysfunction

  • Very little data on the treatment of intradialytic hypertension exist; most current therapeutic strategies have been proposed from potential pathophysiologic mechanisms and are based purely on expert opinion

  • The most important treatment approach for intradialytic hypertension is adequate sodium and fluid removal; reducing sympathetic hyperactivity should also be considered

  • More information from well-conducted randomized controlled clinical trials is needed to determine pathophysiologic mechanisms and define the best treatment approach for intradialytic hypertension

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Frank–Starling curve.

Similar content being viewed by others

References

  1. Amerling, R. C. G. et al. Complications during hemodialysis. In Clinical Dialysis (Eds Nissenson, A. R. & Gentile, D. E.) 236–267 (Appleton & Lange, Stamford, 1995).

    Google Scholar 

  2. Fellner, S. Intradialytic hypertension II. Semin. Dial. 6, 371–373 (1993).

    Article  Google Scholar 

  3. Cirit, M. et al. 'Paradoxical' rise in blood pressure during ultrafiltration in dialysis patients. Nephrol. Dial. Transplant. 10, 1417–1420 (1995).

    CAS  PubMed  Google Scholar 

  4. Mees, D. Rise in blood pressure during hemodialysis-ultrafiltration: a “paradoxical” phenomenon? Int. J. Artif. Organs 19, 569–570 (1996).

    Article  Google Scholar 

  5. Inrig, J. K. et al. Association of intradialytic blood pressure changes with hospitalization and mortality rates in prevalent ESRD patients. Kidney Int. 71, 454–461 (2007).

    Article  CAS  Google Scholar 

  6. Inrig, J. K., Patel, U. D., Toto, R. D. & Szczech, L. A. Association of blood pressure increases during hemodialysis with 2-year mortality in incident hemodialysis patients: a secondary analysis of the Dialysis Morbidity and Mortality Wave 2 Study. Am. J. Kidney Dis. 54, 881–890 (2009).

    Article  CAS  Google Scholar 

  7. National Kidney Foundation KDOQI Clinical Practice Guidelines and Clinical Practice Recommendations: 2006 updates: hemodialysis adequacy [online], (2006).

  8. European Renal Association-European Dialysis and Transplant Association (ERA-EDTA). European best practice guidelines on haemodialysis. Nephrol. Dial. Transplant. 22 (Suppl. 2) (2007).

  9. Gunal, A. I., Karaca, I., Celiker, H., Ilkay, E. & Duman, S. Paradoxical rise in blood pressure during ultrafiltration is caused by increased cardiac output. J. Nephrol. 15, 42–47 (2002).

    PubMed  Google Scholar 

  10. Chou, K.-J. et al. Physiological changes during hemodialysis in patients with intradialysis hypertension. Kidney Int. 69, 1833–1838 (2006).

    Article  CAS  Google Scholar 

  11. Batlle, D. C., von Riotte, A. & Lang, G. Delayed hypotensive response to dialysis in hypertensive patients with end-stage renal disease. Am. J. Nephrol. 6, 14–20 (1986).

    Article  CAS  Google Scholar 

  12. Wilson, I., Shah, T. & Nissenson, A. R. Role of sodium and volume in the pathogenesis of hypertension in hemodialysis. Semin. Dial. 17, 260–264 (2004).

    Article  Google Scholar 

  13. Davenport, A. Response to “The long forgotten salt factor”. Kidney Int. 74, 964–965 (2008).

    Article  Google Scholar 

  14. Shaldon, S., Ozkahya, M., Oh, E., Basci, A. & Dorhout Mees, E. J. The long forgotten salt factor. Kidney Int. 74, 963–964 (2008).

    Article  Google Scholar 

  15. Bianchi, G. et al. Role of the kidney in 'salt and water dependent hypertension' of end-stage disease. Clin. Sci. 42, 47–55 (1972).

    Article  CAS  Google Scholar 

  16. Vertes, V., Cangiano, J. L., Berman, L. B. & Gould, A. Hypertension in end-stage renal disease. N. Engl. J. Med. 280, 978–981 (1969).

    Article  CAS  Google Scholar 

  17. Bazzato, G. et al. Prevention of intra- and postdialytic hypertensive crises by captopril. Contrib. Nephrol. 41, 292–298 (1984).

    Article  CAS  Google Scholar 

  18. Laederach, K. & Weidmann, P. Plasma and urinary catecholamines as related to renal function in man. Kidney Int. 31, 107–111 (1987).

    Article  CAS  Google Scholar 

  19. Converse, R. L. et al. Sympathetic overactivity in patients with chronic renal failure. N. Engl. J. Med. 327, 1912–1918 (1992).

    Article  Google Scholar 

  20. Blankestijn, P. J., Ligtenberg, G., Klein, I. H. & Koomans, H. A. Sympathetic overactivity in renal failure controlled by ACE inhibition: clinical significance. Nephrol. Dial. Transplant. 15, 755–758 (2000).

    Article  CAS  Google Scholar 

  21. Chen, J., Gul, A. & Sarnak, M. J. Management of intradialytic hypertension: the ongoing challenge. Semin. Dial. 19, 141–145 (2006).

    Article  Google Scholar 

  22. Cice, G. et al. Carvedilol increases two-year survival in dialysis patients with dilated cardiomyopathy: a prospective, placebo-controlled trial. J. Am. Coll. Cardiol. 41, 1438–1444 (2003).

    Article  CAS  Google Scholar 

  23. http://clinicaltrials.gov/ct2/show/NCT00827775?term=intradialytic+hypertension&rank=1 (2009).

  24. [No authors listed] Medication use among dialysis patients in the DMMS: United States Renal Data System. Dialysis Morbidity and Mortality Study. Am. J. Kidney Dis. 32, S60–S68 (1998).

  25. Zilch, O. et al. Sympathetic hyperactivity in haemodialysis patients is reduced by short daily hemodialysis. J. Hypertens. 25, 1285–1289 (2007).

    Article  CAS  Google Scholar 

  26. Fagugli, R. M. et al. Effect of short daily hemodialysis and extended standard hemodialysis on blood pressure and cardiac hypertrophy: a comparative study. J. Nephrol. 19, 77–83 (2006).

    PubMed  Google Scholar 

  27. Locatelli, F. et al. Optimal composition of the dialysate, with emphasis on its influence on blood pressure. Nephrol. Dial. Transplant. 19, 785–796 (2004).

    Article  Google Scholar 

  28. Wen, H. T. N. C. S. The Yellow Emperor's Classic of Internal Medicine 141 (University of California Press, Berkeley, 1966).

    Google Scholar 

  29. Twardowski, Z. J. Sodium, hypertension, and an explanation of the “lag phenomenon” in hemodialysis patients. Hemodial. Int. 12, 412–425 (2008).

    Article  Google Scholar 

  30. He, F. J., Markandu, N. D. & MacGregor, G. A. Importance of the renin system for determining blood pressure fall with salt restriction in hypertensive and normotensive whites. Hypertension 38, 321–325 (2001).

    Article  CAS  Google Scholar 

  31. MacGregor, G. A. Double-blind randomised crossover trial of moderate sodium restriction in essential hypertension. Lancet 1, 351–355 (1982).

    Article  CAS  Google Scholar 

  32. MacGregor, G. A., Markandu, N. D., Sagnella, G. A., Singer, D. & Cappuccio, F. P. Double-blind study of three sodium intakes and long-term effects of sodium restriction in essential hypertension. Lancet 2, 1244–1247 (1989).

    Article  CAS  Google Scholar 

  33. Woolfson, R. G. & de Wardener, H. E. Primary renal abnormalities in hereditary hypertension. Kidney Int. 50, 717–731 (1996).

    Article  CAS  Google Scholar 

  34. de Wardener, H. E., He, F. J. & MacGregor, G. A. Plasma sodium and hypertension. Kidney Int. 66, 2454–2466 (2004).

    Article  CAS  Google Scholar 

  35. Gu, J. W. et al. Sodium induces hypertrophy of cultured myocardial myoblasts and vascular smooth muscle cells. Hypertension 31, 1083–1087 (1998).

    Article  CAS  Google Scholar 

  36. Locatelli, F., Colzani, S., D'Amico, M., Manzoni, C. & Di Filippo, S. Dry weight and sodium balance. Semin. Nephrol. 21, 291–297 (2001).

    Article  CAS  Google Scholar 

  37. Locatelli, F., Di Filippo, S. & Manzoni, C. Relevance of the conductivity kinetic model in the control of sodium pool. Kidney Int. Suppl. 58, S89–S95 (2000).

    Article  Google Scholar 

  38. Flanigan, M. J. Role of sodium in hemodialysis. Kidney Int. Suppl. 58, S72–S78 (2000).

    Article  Google Scholar 

  39. Lambie, S. H., Taal, M. W., Fluck, R. J. & McIntyre, C. W. Online conductivity monitoring: validation and usefulness in a clinical trial of reduced dialysate conductivity. ASAIO J. 51, 70–76 (2005).

    Article  CAS  Google Scholar 

  40. Levin, N. W., Zhu, F. & Keen, M. Interdialytic weight gain and dry weight. Blood Purif. 19, 217–221 (2001).

    Article  CAS  Google Scholar 

  41. Jindal, K. et al. Chapter 2: management of blood pressure in hemodialysis patients. J. Am. Soc. Nephrol. 17, S8–S10 (2006).

    Google Scholar 

  42. Santos, S. F. F. & Peixoto, A. J. Revisiting the dialysate sodium prescription as a tool for better blood pressure and interdialytic weight gain management in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 3, 522–530 (2008).

    Article  CAS  Google Scholar 

  43. Gotch, F. A., Lam, M. A., Prowitt, M. & Keen, M. Preliminary clinical results with sodium-volume modeling of hemodialysis therapy. Proc. Clin. Dial. Transplant Forum 10, 12–17 (1980).

    CAS  PubMed  Google Scholar 

  44. Oliver, M. J., Edwards, L. J. & Churchill, D. N. Impact of sodium and ultrafiltration profiling on hemodialysis-related symptoms. J. Am. Soc. Nephrol. 12, 151–156 (2001).

    CAS  PubMed  Google Scholar 

  45. Locatelli, F. et al. Effect of on-line conductivity plasma ultrafiltrate kinetic modeling on cardiovascular stability of hemodialysis patients. Kidney Int. 53, 1052–1060 (1998).

    Article  CAS  Google Scholar 

  46. Charra, B., Bergstrom, J. & Scribner, B. H. Blood pressure control in dialysis patients: importance of the lag phenomenon. Am. J. Kidney Dis. 32, 720–724 (1998).

    Article  CAS  Google Scholar 

  47. Dolson, G. M., Ellis, K. J., Bernardo, M. V., Prakash, R. & Adroqué, H. J. Acute decreases in serum potassium augment blood pressure. Am. J. Kidney Dis. 26, 321–326 (1995).

    Article  CAS  Google Scholar 

  48. Maynard, J. C., Cruz, C., Kleerekoper, M. & Levin, N. W. Blood pressure response to changes in serum ionized calcium during haemodialysis. Ann. Intern. Med. 104, 358–361 (1986).

    Article  CAS  Google Scholar 

  49. Fellner, S. K. et al. Physiological mechanisms for calcium-induced changes in systemic arterial pressure in stable dialysis patients. Hypertension 13, 213–218 (1989).

    Article  CAS  Google Scholar 

  50. van Kuijk, W. H. M., Mulder, A. W., Peels, C. H., Harff, G. H. & Leunissen, K. M. L. Influence of changes in ionized calcium on cardiovascular reactivity during haemodialysis. Clin. Nephrol. 47, 190–196 (1997).

    CAS  PubMed  Google Scholar 

  51. van der Sande, F. M., Cheriex, E. C., van Kuijk, W. H. M. & Leunissen, K. M. L. Effect of dialysate calcium concentrations on intradialytic blood pressure course in cardiac-compromised patients. Am. J. Kidney Dis. 32, 125–131 (1998).

    Article  CAS  Google Scholar 

  52. Gabutti, L., Bianchi, G., Soldini, D., Marone, C. & Burnier, M. Haemodynamic consequences of changing bicarbonate and calcium concentrations in haemodialysis fluids. Nephrol. Dial. Transplant. 24, 973–981 (2009).

    Article  CAS  Google Scholar 

  53. Kyriazis, J., Stamatiadis, D. & Mamouna, A. Intradialytic and interdialytic effects of treatment with 1.25 and 1.75 mmol/l of calcium dialysate on arterial compliance in patients on hemodialysis. Am. J. Kidney Dis. 35, 1096–1103 (2000).

    Article  CAS  Google Scholar 

  54. Kyriazis, J. et al. Arterial stiffness alterations during hemodialysis: the role of dialysate calcium. Nephron Clin. Pract. 106, c34–c42 (2007).

    Article  Google Scholar 

  55. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guidelines for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease–Mineral and Bone Disorder (CKD–MBD). Kidney Int. 76, S1–S130 (2009).

  56. Raj, D. S. et al. Hemodynamic changes during hemodialysis: role of nitric oxide and endothelin. Kidney Int. 61, 697–704 (2002).

    Article  CAS  Google Scholar 

  57. El-Shafey, E. M., El-Nagar, G. F., Selim, M. F., El-Sorogy, H. A. & Sabry, A. A. Is there a role for endothelin-1 in the hemodynamic changes during hemodialysis? Clin. Exp. Nephrol. 12, 370–375 (2008).

    Article  CAS  Google Scholar 

  58. Anderson, T. J., Elstein, E., Haber, H. & Charbonneau, F. Comparative study of ACE-inhibition, angiotensin II antagonism, and calcium channel blockade on flow-mediated vasodilation in patients with coronary disease (BANFF study). J. Am. Coll. Cardiol. 35, 60–66 (2000).

    Article  CAS  Google Scholar 

  59. Sola, S. et al. Irbesartan and lipoic acid improve endothelial function and reduce markers of inflammation in the metabolic syndrome: results of the Irbesartan and Lipoic Acid in Endothelial Dysfunction (ISLAND) study. Circulation 111, 343–348 (2005).

    Article  CAS  Google Scholar 

  60. Kaufmann, P. A. et al. Coronary heart disease in smokers: vitamin C restores coronary microcirculatory function. Circulation 105, 452–456 (2002).

    Article  Google Scholar 

  61. Vasa, M. et al. Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation 103, 2885–2890 (2001).

    Article  CAS  Google Scholar 

  62. Lerman, A., Burnett, J. C. Jr, Higano, S. T., McKinley, L. J. & Holmes, D. R. Jr. Long-term L-arginine supplementation improves small-vessel coronary endothelial function in humans. Circulation 97, 2123–2128 (1998).

    Article  CAS  Google Scholar 

  63. Husain, S., Andrews, N. P., Mulcahy, D., Panza, J. A. & Quyyumi, A. A. Aspirin improves endothelial dysfunction in atherosclerosis. Circulation 97, 716–720 (1998).

    Article  CAS  Google Scholar 

  64. Chan, C. T., Li, S. H. & Verma, S. Nocturnal hemodialysis is associated with restoration of impaired endothelial progenitor cell biology in end-stage renal disease. Am. J. Physiol. Renal Physiol. 289, F679–F684 (2005).

    Article  CAS  Google Scholar 

  65. Caglar, K. et al. Short-term treatment with sevelamer increases serum fetuin-A concentration and improves endothelial dysfunction in chronic kidney disease stage 4 patients. Clin. J. Am. Soc. Nephrol. 3, 61–68 (2008).

    Article  CAS  Google Scholar 

  66. Herbrig, K. et al. Kidney transplantation substantially improves endothelial progenitor cell dysfunction in patients with end-stage renal disease. Am. J. Transplant. 6, 2922–2928 (2006).

    Article  CAS  Google Scholar 

  67. Daugirdas, B. & Ing, H. Handbook of Dialysis (Eds Daugirdas, J. T. et al.) 471 (Lippincott Williams & Wilkins, Philadelphia, 2001).

    Google Scholar 

  68. Raine, A. E. & Roger, S. D. Effects of erythropoietin on blood pressure. Am. J. Kidney Dis. 18 (Suppl. 1), 76–83 (1991).

    CAS  PubMed  Google Scholar 

  69. Krapf, R. & Hulter, H. N. Arterial hypertension induced by erythropoietin and erythropoiesis-stimulating agents (ESA). Clin. J. Am. Soc. Nephrol. 4, 470–480 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Locatelli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Locatelli, F., Cavalli, A. & Tucci, B. The growing problem of intradialytic hypertension. Nat Rev Nephrol 6, 41–48 (2010). https://doi.org/10.1038/nrneph.2009.200

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2009.200

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing