Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Unravelling ancient microbial history with community proteogenomics and lipid geochemistry

Abstract

Our window into the Earth's ancient microbial past is narrow and obscured by missing data. However, we can glean information about ancient microbial ecosystems using fossil lipids (biomarkers) that are extracted from billion-year-old sedimentary rocks. In this Opinion article, we describe how environmental genomics and related methodologies will give molecular fossil research a boost, by increasing our knowledge about how evolutionary innovations in microorganisms have changed the surface of planet Earth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timeline (in billions of years (Gyr) before the present) of major environmental and biological events in the Earth's history.
Figure 2: The diagenetic transformation of okenone, a carotenoid found exclusively in planktonic purple sulphur bacteria (Chromatiaceae), to the molecular fossil okenane.
Figure 3: Community genomics and proteomics for prediction of lipid products.

Similar content being viewed by others

References

  1. Coolen, M. J. L. & Overmann, J. 217,000-year-old DNA sequences of green sulfur bacteria in Mediterranean sapropels and their implications for the reconstruction of the paleoenvironment. Environ. Microbiol. 9, 238–249 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Werne, J. P. et al. Investigating pathways of diagenetic organic matter sulfurization using compound-specific sulfur isotope analysis. Geochim. Cosmochim. Acta 72, 3489–3502 (2008).

    Article  CAS  Google Scholar 

  3. Hebting, Y. et al. Biomarker evidence for a major preservation pathway of sedimentary organic carbon. Science 312, 1627–1631 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Peters, K. E., Walters, C. C. & Moldowan, J. M. The Biomarker Guide (Cambridge Univ. Press, UK, 2004).

    Book  Google Scholar 

  5. Kuypers, M. M. M. et al. Massive expansion of marine archaea during a mid-Cretaceous oceanic anoxic event. Science 293, 92–94 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Schouten, S., Hopmans, E. C., Schefuss, E. & Sinninghe Damsté, J. S. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth Planet. Sci. Lett. 204, 265–274 (2002).

    Article  CAS  Google Scholar 

  7. Sluijs, A. et al. Environmental precursors to rapid light carbon injection at the Palaeocene/Eocene boundary. Nature 450, 1218–1221 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Summons, R. E., Powell, T. G. & Boreham, C. J. Petroleum geology and geochemistry of the Middle Proterozoic McArthur Basin, northern Australia: III. Composition of extractable hydrocarbons. Geochim. Cosmochim. Acta 52, 1747–1763 (1988).

    Article  CAS  Google Scholar 

  9. Brocks, J. J. et al. Biomarker evidence for green and purple sulphur bacteria in a stratified Paleoproterozoic sea. Nature 437, 866–870 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Giovannoni, S. & Stingl, U. The importance of culturing bacterioplankton in the 'omics' age. Nature Rev. Microbiol. 5, 820–826 (2007).

    Article  CAS  Google Scholar 

  11. Achtman, M. & Wagner, M. Microbial diversity and the genetic nature of microbial species. Nature Rev. Microbiol. 6, 431–440 (2008).

    Article  CAS  Google Scholar 

  12. Brocks, J. J. & Summons, R. E. in Treatise on Geochemistry Vol. 8 (ed. Schlesinger, W. H.) 63–115 (Elsevier–Pergamon, Oxford, 2004).

    Google Scholar 

  13. Medini, D. et al. Microbiology in the post-genomic era. Nature. Rev. Microbiol. 6, 419–430 (2008).

    Article  CAS  Google Scholar 

  14. Amann, R. & Fuchs, B. M. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nature Rev. Microbiol. 6, 339–348 (2008).

    Article  CAS  Google Scholar 

  15. Pearson, A., Flood Page, S. R., Jorgenson, T. L., Fischer, W. W. & Higgins, M. B. Novel hopanoid cyclases from the environment. Environ. Microbiol. 9, 2175–2188 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Ourisson, G. in Early Life on Earth, Nobel Symposium Vol. 84 (ed. Bengtson, S.) 259–269 (Columbia Univ. Press, New York, 1994).

    Google Scholar 

  17. Summons, R. E., Jahnke, L. L., Hope, J. M. & Logan, G. A. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400, 554–557 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Wilmes, P., Simmons, S. L., Denef, V. J. & Banfield, J. F. The dynamic genetic repertoire of microbial communities. FEMS Microbiol. Rev. 33, 109–132 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Tyson, G. W. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37–43 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Hart, E. A. et al. Directed evolution to investigate steric control of enzymatic oxidosqualene cyclization. An isoleucine-to-valine mutation in cycloartenol synthase allows lanosterol and parkeol biosynthesis. J. Am. Chem. Soc. 121, 9887–9888 (1999).

    Article  CAS  Google Scholar 

  21. Ohnuma, S. et al. A pathway where polyprenyl diphosphate elongates in prenyltransferase. Insight into a common mechanism of chain length determination of prenyltransferases. J. Biol. Chem. 273, 26705–26713 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Sinninghe Damsté, J. S. et al. Linearly concatenated cyclobutane lipids form a dense bacterial membrane. Nature 419, 708–712 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Sessions, A. L., Sylva, S. P. & Hayes, J. M. A moving-wire device for carbon-isotopic analyses of nanogram quantities of nonvolatile organic carbon. Anal. Chem. 77, 6519–6527 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Orphan, V. J., House, C. H., Hinrichs, K. U., McKeegan, K. D. & DeLong, E. F. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293, 484–487 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Thiel, V. et al. Biomarkers at the microscopic range: ToF-SIMS molecular imaging of Archaea-derived lipids in a microbial mat. Geobiology 5, 413–421 (2007).

    Article  CAS  Google Scholar 

  26. Shin, D. et al. Structure-based inference of molecular functions of proteins of unknown function from Berkeley Structural Genomics Center. J. Struct. Funct. Genomics 8, 99–105 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Allen, H. K., Moe, L. A., Rodbumrer, J., Gaarder, A. & Handelsman, J. Functional metagenomics reveals diverse b-lactamases in a remote Alaskan soil. ISME J. 3, 241–251 (2008).

    Google Scholar 

  28. Lim, H. K. et al. Characterization of a forest soil metagenome clone that confers indirubin and indigo production on Escherichia coli. Appl. Environ. Microbiol. 71, 7768–7777 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Meng, J. et al. An uncultivated crenarchaeota contains functional bacteriochlorophyll a synthase. ISME J. 3, 106–116 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Tyson, G. W. & Banfield, J. F. Cultivating the uncultivated: a community genomics perspective. Trends Microbiol. 13, 411–415 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Denef, V. J., Shah, M. B., VerBerkmoes, N. C., Hettich, R. L. & Banfield, J. F. Implications of strain- and species-level sequence divergence for community and isolate shotgun proteomic analysis. J. Proteome Res. 6, 3152–3161 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Ram, R. J. et al. Community proteomics of a natural microbial biofilm. Science 308, 1915–1920 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Lo, I. et al. Strain-resolved community proteomics reveals recombining genomes of acidophilic bacteria. Nature 446, 537–541 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Walker, A. & Parkhill, J. Single-cell genomics. Nature Rev. Microbiol. 6, 176–177 (2008).

    Article  CAS  Google Scholar 

  35. Raes, J. & Bork, P. Molecular eco-systems biology: towards an understanding of community function. Nature Rev. Microbiol. 6, 693–699 (2008).

    Article  CAS  Google Scholar 

  36. Woyke, T. et al. Assembling the marine metagenome, one cell at a time. PLoS ONE 4, e5299 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. VerBerkmoes, N. C., Denef, V. J., Hettich, R. L. & Banfield, J. F. Functional analysis of natural microbial consortia using community proteomics. Nature Rev. Microbiol. 7, 196–205 (2009).

    Article  CAS  Google Scholar 

  38. Frias-Lopez, J. et al. Microbial community gene expression in ocean surface waters. Proc. Natl Acad. Sci. USA 105, 3805–3810 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pearson, A., Budin, M. & Brocks, J. J. Phylogenetic and biochemical evidence for sterol synthesis in the bacterium Gemmata obscuriglobus. Proc. Natl Acad. Sci. USA 100, 15352–15357 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Roberts, M. S. & Cohan, F. M. The effect of DNA sequence divergence on sexual isolation in Bacillus. Genetics 134, 401–408 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Eppley, J. M., Tyson, G. W., Getz, W. M. & Banfield, J. F. Genetic exchange across a species boundary in the archaeal genus Ferroplasma. Genetics 177, 407–416 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Canfield, D. E. The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu. Rev. Earth Planet Sci. 33, 1–36 (2005).

    Article  CAS  Google Scholar 

  43. Canfield, D. E., Poulton, S. W. & Narbonne, G. M. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315, 92–95 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Hoffman, P. F., Kaufman, A. J., Halverson, G. P. & Schrag, D. P. A Neoproterozoic snowball Earth. Science 281, 1342–1346 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Kirschvink, J. L. & Kopp, R. E. Palaeoproterozoic ice houses and the evolution of oxygen-mediating enzymes: the case for a late origin of photosystem II. Philos. Trans. R. Soc. Lond. B 363, 2755–2765 (2008).

    Article  CAS  Google Scholar 

  46. Bekker, A. et al. Dating the rise of atmospheric oxygen. Nature 427, 117–120 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Anbar, A. D. et al. A whiff of oxygen before the Great Oxidation Event? Science 317, 1903–1906 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Kaufman, A. J. et al. Late Archean biospheric oxygenation and atmospheric evolution. Science 317, 1900–1903 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Wille, M. et al. Evidence for a gradual rise of oxygen between 2.6 and 2.5 Ga from Mo isotopes and Re-PGE signatures in shales. Geochim. Cosmochim. Acta 71, 2417–2435 (2007).

    Article  CAS  Google Scholar 

  50. Sinninghe Damsté, J. S. et al. The rise of the rhizosolenid diatoms. Science 304, 584–587 (2004).

    Article  CAS  Google Scholar 

  51. Xiao, S., Zhang, Y. & Knoll, A. H. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature 391, 553–558 (1998).

    Article  CAS  Google Scholar 

  52. Love, G. D. et al. Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457, 718–721 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Knoll, A. H., Javaux, E., Hewitt, D. & Cohen, P. Eukaryotic organisms in Proterozoic oceans. Philos. Trans. R. Soc. Lond. B 361, 1023–1038 (2006).

    Article  CAS  Google Scholar 

  54. Butterfield, N. J. A vaucheriacean alga from the middle Neoproterozoic of Spitsbergen: implications for the evolution of Proterozoic eukaryotes and the Cambrian explosion. Paleobiology 30, 231–252 (2004).

    Article  Google Scholar 

  55. Rasmussen, B., Bengtson, S., Fletcher, I. R. & McNaughton, N. J. Discoidal impressions and trace-like fossils more than 1200 million years old. Science 296, 1112–1115 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Hofmann, H. J. Precambrian microflora, Belcher Islands, Canada: significance and systematics. J. Paleontol. 50, 1040–1073 (1976).

    Google Scholar 

  57. Rasmussen, B., Fletcher, I. R., Brocks, J. J. & Kilburn, M. R. Reassessing the first appearance of eukaryotes and Cyanobacteria. Nature 455, 1101–1104 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Brocks, J. J., Summons, R. E., Buick, R. & Logan, G. A. Origin and significance of aromatic hydrocarbons in giant iron ore deposits of the late Archean Hamersley Basin in Western Australia. Org. Geochem. 34, 1161–1175 (2003).

    Article  CAS  Google Scholar 

  59. Kazmierczak, J. & Altermann, W. Neoarchean biomineralization by benthic cyanobacteria. Science 298, 2351 (2002).

    Article  PubMed  Google Scholar 

  60. Shen, Y., Buick, R. & Canfield, D. E. Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 410, 77–81 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Hayes, J. M. in Early Life on Earth (ed. Bengtson, S.) 220–236 (Columbia Univ. Press, New York, 1994).

    Google Scholar 

  62. Hinrichs, K.-U. Microbial fixation of methane carbon at 2.7 Ga: was an anaerobic mechanism possible? Geochem. Geophys. Geosyst. 3, 1042 (2002).

    Article  Google Scholar 

  63. Rasmussen, B. Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit. Nature 405, 2676–2679 (2000).

    Article  CAS  Google Scholar 

  64. Philippot, P. et al. Early Archaean microorganisms preferred elemental sulfur, not sulfate. Science 317, 1534–1537 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Ueno, Y., Yamada, K., Yoshida, N., Maruyama, S. & Isozaki, Y. Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440, 516–519 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Walter, M. R., Buick, R. & Dunlop, J. S. R. Stromatolites 3,400–3,500 Myr old from the North Pole area, Western Australia. Nature 284, 443–445 (1980).

    Article  Google Scholar 

  67. Rosing, M. T. 13C-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from West Greenland. Science 283, 674–676 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Teeling, H., Meyerdierks, A., Bauer, M., Amann, R. & Glöckner, F. O. Application of tetranucleotide frequencies for the assignment of genomic fragments. Environ. Microbiol. 6, 938–947 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Abe, T., Sugawara, H., Kinouchi, M., Kanaya, S. & Ikemura, T. Novel phylogenetic studies of genomic sequence fragments derived from uncultured microbe mixtures in environmental and clinical samples. DNA Res. 12, 281–290 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Mavromatis, K. et al. Use of simulated data sets to evaluate the fidelity of metagenomic processing methods. Nature Methods 4, 495–500 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Karlin, S., Mrázek, J. & Campbell, A. M. Compositional biases of bacterial genomes and evolutionary implications. J. Bacteriol. 179, 3899–3913 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Vink, A., Schouten, S., Sephton, S. & Sinninghe Damsté, J. S. A newly discovered norisoprenoid, 2,6,15,19-tetramethylicosane, in Cretaceous black shales. Geochim. Cosmochim. Acta 62, 965–970 (1998).

    Article  CAS  Google Scholar 

  73. Thiel, V. et al. Highly isotopically depleted isoprenoids: molecular markers for ancient methane venting. Geochim. Cosmochim. Acta 63, 3959–3966 (1999).

    Article  CAS  Google Scholar 

  74. Schouten, S., van der Maarel, M. J., Huber, R. & Sinninghe Damsté, J. S. 2,6,10,15,19-pentamethylicosenes in Methanolobus bombayensis, a marine methanogenic archaeon, and in Methanosarcina mazei. Org. Geochem. 26, 409–414 (1997).

    Article  CAS  Google Scholar 

  75. Rohmer, M., Bouvier-Navé, P. & Ourisson, G. Distribution of hopanoid triterpenes in prokaryotes. J. Gen. Microbiol. 130, 1137–1150 (1984).

    CAS  Google Scholar 

  76. Rashby, S. E., Sessions, A. L., Summons, R. E. & Newman, D. K. Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototroph. Proc. Natl Acad. Sci. USA 104, 15099–15104 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zundel, M. & Rohmer, M. Prokaryotic triterpenoids 1. 3 b-methylhopanoids from Acetobacter species and Methylococcus capsulatus. Eur. J. Biochem. 150, 23–27 (1985).

    Article  CAS  PubMed  Google Scholar 

  78. Summons, R. E. & Jahnke, L. L. in Biological Markers in Sediments and Petroleum (eds Moldowan, J. M., Albrecht, P. & Philp, R. P.) 182–200 (Prentice Hall, New Jersey, 1992).

    Google Scholar 

  79. Bird, C. W. et al. Steroids and squalene in Methylococcus capsulatus grown on methane. Nature 230, 473–474 (1971).

    Article  CAS  PubMed  Google Scholar 

  80. Schaeffer, P., Adam, P., Wehrung, P. & Albrecht, P. Novel aromatic carotenoid derivatives from sulfur photosynthetic bacteria in sediments. Tetrahedr. Lett. 38, 8413–8416 (1997).

    Article  CAS  Google Scholar 

  81. Summons, R. E. & Powell, T. G. Chlorobiaceae in Paleozoic seas revealed by biological markers, isotopes and geology. Nature 319, 763–765 (1986).

    Article  CAS  Google Scholar 

  82. Brocks, J. J. & Schaeffer, P. Okenane, a biomarker for purple sulfur bacteria (Chromatiaceae), and other new carotenoid derivatives from the 1,640 Ma Barney Creek Formation. Geochim. Cosmochim. Acta 72, 1396–1414 (2008).

    Article  CAS  Google Scholar 

  83. Holba, A. G. et al. 24-norcholestanes as age-sensitive molecular fossils. Geology 26, 783–786 (1998).

    Article  CAS  Google Scholar 

  84. Volkman, J. K. Sterols in microorganisms. Appl. Microbiol. Biotechnol. 60, 496–506 (2003).

    Article  CAS  Google Scholar 

  85. Bode, H. B. et al. Steroid biosynthesis in prokaryotes: identification of myxobacterial steroids and cloning of the first bacterial 2,3(S)-oxidosqualene cyclase from the myxobacterium Stigmatella aurantiaca. Mol. Microbiol. 47, 471–481 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Grantham, P. J. & Wakefield, L. L. Variations in the sterane carbon number distribution of marine source rock derived oils through geological time. Org. Geochem. 12, 61–73 (1988).

    Article  CAS  Google Scholar 

  87. Moldowan, J. M. et al. Sedimentary 24-n-propylcholestanes, molecular fossils diagnostic of marine algae. Science 247, 309–312 (1990).

    Article  CAS  PubMed  Google Scholar 

  88. McCaffrey, M. A. et al. Paleoenvironmental implications of novel C30 steranes in Precambrian to Cenozoic age petroleum and bitumen. Geochim. Cosmochim. Acta 58, 529–532 (1994).

    Article  CAS  Google Scholar 

  89. McCaffrey, A. M., Dahl, J. E. P., Sundararaman, P., Moldowan, J. M. & Schoell, M. Source rock quality determination from oil biomarkers II: a case study using tertiary-reservoired Beauford Sea oils. Am. Assoc. Pet. Geol. Bull. 78, 1527–1540 (1994).

    CAS  Google Scholar 

  90. Moldowan, J. M. & Talyzina, N. M. Biogeochemical evidence for dinoflagellate ancestors in the Early Cambrian. Science 281, 1168–1170 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Nichols, P. D., Volkman, J. K., Palmisano, A. C., Smith, G. A. & White, D. C. Occurrence of an isoprenoid C25 di-unsaturated alkene and high neutral lipid content in Antarctic sea-ice diatom communities. J. Phycol. 24, 90–96 (1988).

    Article  CAS  Google Scholar 

  92. Brassell, S. C., Eglinton, G., Marlowe, I. T., Pflaumann, U. & Sarnthein, M. Molecular stratigraphy: a new tool for climatic assessment. Nature 320, 129–133 (1986).

    Article  CAS  Google Scholar 

  93. Ten Haven, H. L., Rohmer, M., Rullkötter, J. & Bisseret, P. Tetrahymanol, the most likely precursor of gammacerane, occurs ubiquitously in marine sediments. Geochim. Cosmochim. Acta 53, 3073–3079 (1989).

    Article  CAS  Google Scholar 

  94. Sinninghe Damsté, J. S. et al. Evidence for gammacerane as an indicator of water column stratification. Geochim. Cosmochim. Acta 59, 1895–1900 (1995).

    Article  PubMed  Google Scholar 

  95. van Aarssen, B. G. K., Hessels, J. K. C., Abbink, O. A. & de Leeuw, J. W. The occurrence of polycyclic sesqui-, tri-, and oligoterpenoids derived from a resinous polymeric cadinene in crude oils from southeast Asia. Geochim. Cosmochim. Acta 56, 1231–1246 (1992).

    Article  CAS  Google Scholar 

  96. Moldowan, J. M. et al. The molecular fossil record of oleanane and its relation to angiosperms. Science 265, 768–771 (1994).

    Article  CAS  PubMed  Google Scholar 

  97. Noble, R. A., Alexander, R., Kagi, R. I. & Knox, J. Tetracyclic diterpenoid hydrocarbons in some Australian coals, sediments and crude oils. Geochim. Cosmochim. Acta 49, 2141–2147 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Fischer and B. Rasmussen for advice on figure 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen J. Brocks.

Related links

Related links

FURTHER INFORMATION

Jochen J. Brocks' homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brocks, J., Banfield, J. Unravelling ancient microbial history with community proteogenomics and lipid geochemistry. Nat Rev Microbiol 7, 601–609 (2009). https://doi.org/10.1038/nrmicro2167

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2167

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing