Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Manipulation of host Kruppel-like factor (KLF) function by exotoxins from diverse bacterial pathogens

Key Points

  • Gram-negative and Gram-positive pathogens use a common virulence strategy to increase the expression of Kruppel-like factor mammalian transcriptional regulators.

  • This strategy involves the subversion of host cell functions by secreting bacterial exotoxins using a type III secretion system or an alternative secretion mechanism.

  • Exploitation of the Kruppel-like factor regulatory cascade results in the modulation of numerous cell processes, including NFκB activation, pro-inflammatory cytokine expression, actin cytoskeletal dynamics, cell proliferation and phagocytosis.

  • The modulation of Kruppel-like factors 2 and 6 by diverse pathogens such as Pseudomonas aeruginosa, Yersinia enterocolitica, Clostridium botulinum and Staphylococcus aureus could involve a common mechanism based on altered activities of the Rho protein signalling cascade.

  • Increased expression of KLF2 by bacterial pathogens may be due to relief from repression of KLF2 by Rho-GTP, which may or may not involve NFκB, itself a negative regulator of KLF2 expression.

  • Analysis of the modular structure of the bacterial effector proteins indicates that enzymatic substrate specificity has an important role in the alteration of these transcriptional regulators.

  • Increased expression of Kruppel-like factors 2 and/or 6, as is seen in response to bacterial infection would result in decreased expression of NFκB and JUN, inhibition of phagocytosis, pro-inflammatory cytokines and cellular proliferation, ultimately to the detriment of the host.

Abstract

Diverse pathogenic bacteria have developed similar mechanisms to subvert host cell responses. In this Progress article, we focus on bacterial virulence factors with different enzymatic activities that can increase the expression of the Kruppel-like factor (KLF) family of mammalian transcriptional regulators through their ability to modify the activity of a common host-cell target — the Rho protein family. By using a common virulence strategy, both Gram-negative and Gram-positive pathogens exploit the KLF regulatory cascade to modulate nuclear factor κB activation, pro-inflammatory cytokine expression, actin cytoskeletal dynamics and phagocytosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microbial pathogens control Kruppel-like factors through regulation of Rho proteins.
Figure 2: Conserved functional domains of secreted bacterial proteins that modulate the expression of KLF2 and KLF6.

Similar content being viewed by others

References

  1. Martin J. Blaser . Statement of the Infectious Diseases Society of America concerning Project Bioshield reauthorization issues presented before the U. S. House Energy and Commerce Committee's Subcommittee on Health April 6, 2006. [online], (2006).

  2. Spellberg, B. Trends in antimicrobial drug development: implications for the future Clin. Infect. Dis. 38, 1279–1286 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Suske, G., Bruford, E. & Philipsen, S. Mammalian SP/KLF transcription factors: bring in the family. Genomics 85, 551–556 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Jain, M. K. & Ridker, P. M. Anti-inflammatory effects of statins: clinical evidence and basic mechanisms. Nature Rev. Drug Discov. 4, 977–987 (2005).

    Article  CAS  Google Scholar 

  5. van Vliet, J. et al. Human KLF17 is a new member of the Sp/KLF family of transcription factors. Genomics 87, 474–482 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Wani, M. A., Means, R. T., Jr & Lingrel, J. B. Loss of LKLF function results in embryonic lethality in mice. Transgenic Res. 7, 229–238 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Kuo, C. T. et al. The LKLF transcription factor is required for normal tunica media formation and blood vessel stabilization during murine embryogenesis. Genes Dev. 11, 2996–3006 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kuo, C. T., Veselits, M. L. & Leiden, J. M. LKLF: A transcriptional regulator of single-positive T cell quiescence and survival. Science 277, 1986–1990 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Das, H. et al. Kruppel-like factor 2 (KLF2) regulates proinflammatory activation of monocytes. Proc. Natl Acad. Sci. USA 103, 6653–6658 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Haaland, R. E., Yu, W. & Rice, A. P. Identification of LKLF-regulated genes in quiescent CD4+ T lymphocytes. Mol. Immunol. 42, 627–641 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. SenBanerjee, S. et al. KLF2 Is a novel transcriptional regulator of endothelial proinflammatory activation. J. Exp. Med. 199, 1305–1315 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pahl, H. L. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18, 6853–6866 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Hayden, M. S. & Ghosh, S. Signaling to NF-kB. Genes Dev. 18, 2195–2224 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Kumar, A., Lin, Z., SenBanerjee, S. & Jain, M. K. Tumor necrosis factor α-mediated reduction of KLF2 is due to inhibition of MEF2 by NF-kB and histone deacetylases. Mol. Cell Biol. 25, 5893–5903 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kojima, S. et al. Transcriptional activation of urokinase by the Kruppel-like factor Zf9/COPEB activates latent TGF-β1 in vascular endothelial cells. Blood 95, 1309–1316 (2000).

    CAS  PubMed  Google Scholar 

  16. Kim, Y. et al. Transcriptional activation of transforming growth factor β1 and its receptors by the Kruppel-like factor Zf9/core promoter-binding protein and Sp1. Potential mechanisms for autocrine fibrogenesis in response to injury. J. Biol. Chem. 273, 33750–33758 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Narla, G. et al. KLF6, a candidate tumor suppressor gene mutated in prostate cancer. Science 294, 2563–2566 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Slavin, D. A. et al. A new role for the Kruppel-like transcription factor KLF6 as an inhibitor of c-Jun proto-oncoprotein function. Oncogene 23, 8196–8205 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Benzeno, S. et al. Cyclin-dependent kinase inhibition by the KLF6 tumor suppressor protein through interaction with cyclin D1. Cancer Res. 64, 3885–3891 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Chen, C. et al. Deletion, mutation, and loss of expression of KLF6 in human prostate cancer. Am. J. Pathol. 162, 1349–1354 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kremer-Tal, S. et al. Frequent inactivation of the tumor suppressor Kruppel-like factor 6 (KLF6) in hepatocellular carcinoma. Hepatology 40, 1047–1052 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Reeves, H. L. et al. Kruppel-like factor 6 (KLF6) is a tumor-suppressor gene frequently inactivated in colorectal cancer. Gastroenterology 126, 1090–1103 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Ito, G. et al. Kruppel-like factor 6 is frequently down-regulated and induces apoptosis in non-small cell lung cancer cells. Cancer Res. 64, 3838–3843 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Narla, G. et al. Targeted inhibition of the KLF6 splice variant, KLF6 SV1, suppresses prostate cancer cell growth and spread. Cancer Res. 65, 5761–8768 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Hybiske, K., Ichikawa, J. K., Huang, V., Lory, S. J. & Machen, T. E. Cystic fibrosis airway epithelial cell polarity and bacterial flagellin determine host response to Pseudomonas aeruginosa. Cell Microbiol. 6, 49–63 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. O'Grady, E. P., Mulcahy, H., O'Callaghan, J., Adams, C. & O'Gara, F. Pseudomonas aeruginosa infection of airway epithelial cells modulates expression of Kruppel-like factors 2 and 6 via RsmA-mediated regulation of type III exoenzymes S and Y. Infect. Immun. 74, 5893–5902 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sauvonnet, N., Pradet-Balade, B., Garcia-Sanz, J. A. & Cornelis, G. R. Regulation of mRNA expression in macrophages after Yersinia enterocolitica infection. Role of different Yop effectors. J. Biol. Chem. 277, 25133–25142 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Hoffmann, R., van Erp, K., Trulzsch, K. & Heesemann, J. Transcriptional responses of murine macrophages to infection with Yersinia enterocolitica. Cell Microbiol. 6, 377–390 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Bohn, E. et al. Gene expression patterns of epithelial cells modulated by pathogenicity factors of Yersinia enterocolitica. Cell Microbiol. 6, 129–141 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Moreilhon, C. et al. Live Staphylococcus aureus and bacterial soluble factors induce different transcriptional responses in human airway cells. Physiol. Genomics 20, 244–255 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Sen-Banerjee, S. et al. Kruppel-like factor 2 as a novel mediator of statin effects in endothelial cells. Circulation 112, 720–726 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Bishop, A. L. & Hall, A. Rho GTPases and their effector proteins. Biochem. J. 348, 241–255 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barbieri, J. T., Riese, M. J. & Aktories, K. Bacterial toxins that modify the actin cytoskeleton. Annu. Rev. Cell Dev. Biol. 18, 315–344 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Stebbins, C. E. Structural insights into bacterial modulation of the host cytoskeleton. Curr. Opin. Struct. Biol. 14, 731–740 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Aktories, K. & Barbieri, J. T. Bacterial cytotoxins: targeting eukaryotic switches. Nature Rev. Microbiol. 3, 397–410 (2005).

    Article  CAS  Google Scholar 

  36. Viboud, G. I. & Bliska, J. B. Yersinia outer proteins: role in modulation of host cell signaling responses and pathogenesis. Annu. Rev. Microbiol. 59, 69–89 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Goehring, U. M., Schmidt, G., Pederson, K. J., Aktories, K. & Barbieri, J. T. The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases. J. Biol. Chem. 274, 36369–36372 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Krall, R., Schmidt, G., Aktories, K. & Barbieri, J. T. Pseudomonas aeruginosa ExoT is a Rho GTPase-activating protein. Infect. Immun. 68, 6066–6068 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vincent, T. S., Fraylick, J. E., McGuffie, E. M. & Olson, J. C. ADP-ribosylation of oncogenic Ras proteins by pseudomonas aeruginosa exoenzyme S in vivo. Mol. Microbiol. 32, 1054–1064 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Maresso, A. W., Baldwin, M. R. & Barbieri, J. T. Ezrin/radixin/moesin proteins are high affinity targets for ADP-ribosylation by Pseudomonas aeruginosa ExoS. J. Biol. Chem. 279, 38402–38408 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Sun, J. & Barbieri, J. T. Pseudomonas aeruginosa ExoT ADP-ribosylates CT10 regulator of kinase (Crk) proteins. J. Biol. Chem. 278, 32794–32800 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Prehna, G., Ivanov, M. I., Bliska, J. B. & Stebbins, C. E. Yersinia virulence depends on mimicry of host Rho-family nucleotide dissociation inhibitors. Cell 126, 869–880 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Yahr, T. L., Vallis, A. J., Hancock, M. K., Barbieri, J. T. & Frank, D. W. ExoY, an adenylate cyclase secreted by the Pseudomonas aeruginosa type III system. Proc. Natl Acad. Sci. USA 95, 13899–13904 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tamma, G. et al. cAMP-induced AQP2 translocation is associated with RhoA inhibition through RhoA phosphorylation and interaction with RhoGDI. J. Cell Sci. 116, 1519–1525 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Dinges, M. M., Orwin, P. M. & Schlievert, P. M. Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev. 13, 16–34 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huddleson, J. P., Ahmad, N., Srinivasan, S. & Lingrel, J. B. Induction of KLF2 by fluid shear stress requires a novel promoter element activated by a phosphatidylinositol 3-kinase-dependent chromatin-remodelling pathway. J. Biol. Chem. 280, 23371–23379 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants awarded by the Higher Education Authority of Ireland (PRTLI programme), the Science Foundation of Ireland, the European Commission and the Health Research Board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fergal O'Gara.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Clostridium botulinum

Escherichia coli

Pseudomonas aeruginosa

Staphylococcus aureus

Yersinia enterocolitica

Yersinia pestis

Yersinia pseudotuberculosis

FURTHER INFORMATION

Fergal O'Gara's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Grady, E., Mulcahy, H., Adams, C. et al. Manipulation of host Kruppel-like factor (KLF) function by exotoxins from diverse bacterial pathogens. Nat Rev Microbiol 5, 337–341 (2007). https://doi.org/10.1038/nrmicro1641

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1641

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing