Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Orchestrating nuclear envelope disassembly and reassembly during mitosis

Key Points

  • The nucleus is surrounded by the nuclear envelope (NE), which is formed by two juxtaposed membranes, termed the inner and outer nuclear membranes. A protein meshwork of intermediate filament proteins — the nuclear lamina — is attached to the inner face of the NE. The NE is perforated by holes that are occupied by nuclear pore complexes (NPCs), which serve the selective transport of macromolecules between nucleus and cytoplasm.

  • The NE is a highly dynamic structure that is completely disassembled and reassembled during open mitosis in higher eukaryotes. These mitotic changes are subject to both spatial and temporal control mechanisms that are embedded in the more general network that controls cell division.

  • NE breakdown (NEBD) involves the disassembly of NPCs, the disintegration of the nuclear lamina and the retraction of NE membranes into the membrane system of the endoplasmic reticulum. NEBD is triggered by the concerted action of mitotic kinases, some of which are known to directly contribute to NEBD.

  • Some of the protein constituents of NPCs, termed nucleoporins, have prominent roles during specific steps of mitotic progression, such as spindle assembly and sister chromatid separation.

  • NE reformation occurs around a compacted mass of segregated chromatin in each daughter cell. NPC assembly is initiated in anaphase by the deposition of prepores on chromatin. Nuclear membrane reformation commences with the attraction of ER tubules to the surface of chromatin, which then flatten to form membrane sheets. DNA-binding inner nuclear membrane proteins have a pivotal role in establishing chromatin–membrane contacts. Subsequent events in nuclear reformation include the formation of a closed NE that contains fully assembled, transport-competent NPCs, and the reformation of the nuclear lamina.

Abstract

Cell division in eukaryotes requires extensive architectural changes of the nuclear envelope (NE) to ensure that segregated DNA is finally enclosed in a single cell nucleus in each daughter cell. Higher eukaryotic cells have evolved 'open' mitosis, the most extreme mechanism to solve the problem of nuclear division, in which the NE is initially completely disassembled and then reassembled in coordination with DNA segregation. Recent progress in the field has now started to uncover mechanistic and molecular details that underlie the changes in NE reorganization during open mitosis. These studies reveal a tight interplay between NE components and the mitotic machinery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The main structural features of the nuclear envelope.
Figure 2: From 'open' to 'closed' mitosis.
Figure 3: Nuclear envelope breakdown during 'open' mitosis.
Figure 4: Nucleoporins in spindle assembly and kinetochore function.
Figure 5: Nuclear envelope reassembly after mitosis.

Similar content being viewed by others

References

  1. Schneider, A. Untersuchungen über Plathelminthen. Jahrb. Oberhess. Ges. Naturwiss. Heilk. 14, 69–81 (1873) (in German).

    Google Scholar 

  2. Flemming, W. Zellsubstanz, Kern und Zelltheilung. (Vogel, Leipzig, 1882) (in German).

    Google Scholar 

  3. Hetzer, M., Walther, T. C. & Mattaj, I. W. Pushing the envelope: structure, function, and dynamics of the nuclear periphery. Annu. Rev. Cell Dev. Biol. 21, 347–380 (2005).

    CAS  PubMed  Google Scholar 

  4. Gruenbaum, Y., Margalit, A., Goldman, R. D., Shumaker, D. K. & Wilson, K. L. The nuclear lamina comes of age. Nature Rev. Mol. Cell Biol. 6, 21–31 (2005).

    CAS  Google Scholar 

  5. Tzur, Y. B., Wilson, K. L. & Gruenbaum, Y. SUN-domain proteins: 'velcro' that links the nucleoskeleton to the cytoskeleton. Nature Rev. Mol. Cell Biol. 7, 782–788 (2006).

    CAS  Google Scholar 

  6. Stewart, C. L., Roux, K. J. & Burke, B. Blurring the boundary: the nuclear envelope extends its reach. Science 318, 1408–1412 (2007).

    CAS  PubMed  Google Scholar 

  7. Akhtar, A. & Gasser, S. M. The nuclear envelope and transcriptional control. Nature Rev. Genet. 8, 507–517 (2007).

    CAS  PubMed  Google Scholar 

  8. Burke, B. & Ellenberg, J. Remodelling the walls of the nucleus. Nature Rev. Mol. Cell Biol. 3, 487–497 (2002).

    CAS  Google Scholar 

  9. Kalab, P., Pralle, A., Isacoff, E. Y., Heald, R. & Weis, K. Analysis of a RanGTP-regulated gradient in mitotic somatic cells. Nature 440, 697–701 (2006). Analyses the distribution of RanGTP in mitotic somatic cells and shows that the RanGTP gradient around chromatin contributes to spindle assembly.

    CAS  PubMed  Google Scholar 

  10. Quimby, B. B. & Dasso, M. The small GTPase Ran: interpreting the signs. Curr. Opin. Cell Biol. 15, 338–344 (2003).

    CAS  PubMed  Google Scholar 

  11. Clarke, P. R. & Zhang, C. Spatial and temporal coordination of mitosis by Ran GTPase. Nature Rev. Mol. Cell Biol. 9, 464–477 (2008).

    CAS  Google Scholar 

  12. Terasaki, M. et al. A new model for nuclear envelope breakdown. Mol. Biol. Cell 12, 503–510 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Dultz, E. et al. Systematic kinetic analysis of mitotic dis- and reassembly of the nuclear pore in living cells. J. Cell Biol. 180, 857–865 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Katsani, K. R., Karess, R. E., Dostatni, N. & Doye, V. In vivo dynamics of Drosophila nuclear envelope components. Mol. Biol. Cell 19, 3652–3666 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kiseleva, E., Rutherford, S., Cotter, L. M., Allen, T. D. & Goldberg, M. W. Steps of nuclear pore complex disassembly and reassembly during mitosis in early Drosophila embryos. J. Cell Sci. 114, 3607–3618 (2001).

    CAS  PubMed  Google Scholar 

  16. Lenart, P. et al. Nuclear envelope breakdown in starfish oocytes proceeds by partial NPC disassembly followed by a rapidly spreading fenestration of nuclear membranes. J. Cell Biol. 160, 1055–1068 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Salina, D. et al. Cytoplasmic dynein as a facilitator of nuclear envelope breakdown. Cell 108, 97–107 (2002).

    CAS  PubMed  Google Scholar 

  18. Beaudouin, J., Gerlich, D., Daigle, N., Eils, R. & Ellenberg, J. Nuclear envelope breakdown proceeds by microtubule-induced tearing of the lamina. Cell 108, 83–96 (2002).

    CAS  PubMed  Google Scholar 

  19. Mühlhäusser, P. & Kutay, U. An in vitro nuclear disassembly system reveals a role for the RanGTPase system and microtubule-dependent steps in nuclear envelope breakdown. J. Cell Biol. 178, 595–610 (2007).

    PubMed  PubMed Central  Google Scholar 

  20. Gerace, L. & Blobel, G. The nuclear envelope lamina is reversibly depolymerized during mitosis. Cell 19, 277–287 (1980). First demonstration that the mitotic disassembly of the nuclear lamina coincides with phosphorylation of lamin proteins.

    CAS  PubMed  Google Scholar 

  21. Georgatos, S. D., Pyrpasopoulou, A. & Theodoropoulos, P. A. Nuclear envelope breakdown in mammalian cells involves stepwise lamina disassembly and microtubule-drive deformation of the nuclear membrane. J. Cell Sci. 110, 2129–2140 (1997).

    CAS  PubMed  Google Scholar 

  22. Lee, K. K., Gruenbaum, Y., Spann, P., Liu, J. & Wilson, K. L. C. elegans nuclear envelope proteins emerin, MAN1, lamin, and nucleoporins reveal unique timing of nuclear envelope breakdown during mitosis. Mol. Biol. Cell 11, 3089–3099 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ellenberg, J. et al. Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J. Cell Biol. 138, 1193–1206 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang, L., Guan, T. & Gerace, L. Integral membrane proteins of the nuclear envelope are dispersed throughout the endoplasmic reticulum during mitosis. J. Cell Biol. 137, 1199–1210 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Puhka, M., Vihinen, H., Joensuu, M. & Jokitalo, E. Endoplasmic reticulum remains continuous and undergoes sheet-to-tubule transformation during cell division in mammalian cells. J. Cell Biol. 179, 895–909 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Stick, R., Angres, B., Lehner, C. F. & Nigg, E. A. The fates of chicken nuclear lamin proteins during mitosis: evidence for a reversible redistribution of lamin B2 between inner nuclear membrane and elements of the endoplasmic reticulum. J. Cell Biol. 107, 397–406 (1988).

    CAS  PubMed  Google Scholar 

  27. Peter, M., Nakagawa, J., Doree, M., Labbe, J. C. & Nigg, E. A. In vitro disassembly of the nuclear lamina and M phase-specific phosphorylation of lamins by cdc2 kinase. Cell 61, 591–602 (1990).

    CAS  PubMed  Google Scholar 

  28. Heald, R. & McKeon, F. Mutations of phosphorylation sites in lamin A that prevent nuclear lamina disassembly in mitosis. Cell 61, 579–589 (1990).

    CAS  PubMed  Google Scholar 

  29. Favreau, C., Worman, H. J., Wozniak, R. W., Frappier, T. & Courvalin, J. C. Cell cycle-dependent phosphorylation of nucleoporins and nuclear pore membrane protein Gp210. Biochemistry 35, 8035–8044 (1996).

    CAS  PubMed  Google Scholar 

  30. Macaulay, C., Meier, E. & Forbes, D. J. Differential mitotic phosphorylation of proteins of the nuclear pore complex. J. Biol. Chem. 270, 254–262 (1995).

    CAS  PubMed  Google Scholar 

  31. Glavy, J. S. et al. Cell-cycle-dependent phosphorylation of the nuclear pore Nup107–160 subcomplex. Proc. Natl Acad. Sci. USA 104, 3811–3816 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Blethrow, J. D., Glavy, J. S., Morgan, D. O. & Shokat, K. M. Covalent capture of kinase-specific phosphopeptides reveals Cdk1–cyclin B substrates. Proc. Natl Acad. Sci. USA 105, 1442–1447 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Mansfeld, J. et al. The conserved transmembrane nucleoporin NDC1 is required for nuclear pore complex assembly in vertebrate cells. Mol. Cell 22, 93–103 (2006).

    CAS  PubMed  Google Scholar 

  34. Onischenko, E. A., Gubanova, N. V., Kiseleva, E. V. & Hallberg, E. Cdk1 and okadaic acid-sensitive phosphatases control assembly of nuclear pore complexes in Drosophila embryos. Mol. Biol. Cell 16, 5152–5162 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Pfaller, R., Smythe, C. & Newport, J. W. Assembly/disassembly of the nuclear envelope membrane: cell cycle-dependent binding of nuclear membrane vesicles to chromatin in vitro. Cell 65, 209–217 (1991).

    CAS  PubMed  Google Scholar 

  36. Dechat, T. et al. Detergent–salt resistance of LAP2 in interphase nuclei and phosphorylation-dependent association with chromosomes early in nuclear assembly implies functions in nuclear structure dynamics. EMBO J. 17, 4887–4902 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Dreger, M., Otto, H., Neubauer, G., Mann, M. & Hucho, F. Identification of phosphorylation sites in native lamina-associated polypeptide 2β. Biochemistry 38, 9426–9434 (1999).

    CAS  PubMed  Google Scholar 

  38. Courvalin, J. C., Segil, N., Blobel, G. & Worman, H. J. The lamin B receptor of the inner nuclear membrane undergoes mitosis-specific phosphorylation and is a substrate for p34cdc2-type protein kinase. J. Biol. Chem. 267, 19035–19038 (1992).

    CAS  PubMed  Google Scholar 

  39. Gong, D. et al. Cyclin A2 regulates nuclear-envelope breakdown and the nuclear accumulation of cyclin B1. Curr. Biol. 17, 85–91 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Dai, Z., Dulyaninova, N. G., Kumar, S., Bresnick, A. R. & Lawrence, D. S. Visual snapshots of intracellular kinase activity at the onset of mitosis. Chem. Biol. 14, 1254–1260 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Goss, V. L. et al. Identification of nuclear II protein kinase C as a mitotic lamin kinase. J. Biol. Chem. 269, 19074–19080 (1994).

    CAS  PubMed  Google Scholar 

  42. Deacon, E. M. et al. Generation of diacylglycerol molecular species through the cell cycle: a role for 1-stearoyl, 2-arachidonyl glycerol in the activation of nuclear protein kinase C-II at G2/M. J. Cell Sci. 115, 983–989 (2002).

    CAS  PubMed  Google Scholar 

  43. Thompson, L. J. & Fields, A. P. βII protein kinase C is required for the G2/M phase transition of cell cycle. J. Biol. Chem. 271, 15045–15053 (1996).

    CAS  PubMed  Google Scholar 

  44. Collas, P. Sequential PKC- and Cdc2-mediated phosphorylation events elicit zebrafish nuclear envelope disassembly. J. Cell Sci. 112, 977–987 (1999).

    CAS  PubMed  Google Scholar 

  45. Hachet, V., Canard, C. & Gönczy, P. Centrosomes promote timely mitotic entry in C. elegans embryos. Dev. Cell 12, 531–541 (2007).

    CAS  PubMed  Google Scholar 

  46. Portier, N. et al. A microtubule-independent role for centrosomes and Aurora A in nuclear envelope breakdown. Dev. Cell 12, 515–529 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Chase, D. et al. The polo-like kinase PLK-1 is required for nuclear envelope breakdown and the completion of meiosis in Caenorhabditis elegans. Genesis 26, 26–41 (2000).

    CAS  PubMed  Google Scholar 

  48. Lenart, P. et al. The small-molecule inhibitor BI 2536 reveals novel insights into mitotic roles of polo-like kinase 1. Curr. Biol. 17, 304–315 (2007).

    CAS  PubMed  Google Scholar 

  49. Osmani, A. H., Davies, J., Liu, H. L., Nile, A. & Osmani, S. A. Systematic deletion and mitotic localization of the nuclear pore complex proteins of Aspergillus nidulans. Mol. Biol. Cell 17, 4946–4961 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu, L., Osmani, S. A. & Mirabito, P. M. A role for NIMA in the nuclear localization of cyclin B in Aspergillus nidulans. J. Cell Biol. 141, 1575–1587 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. De Souza, C. P., Osmani, A. H., Hashmi, S. B. & Osmani, S. A. Partial nuclear pore complex disassembly during closed mitosis in Aspergillus nidulans. Curr. Biol. 14, 1973–1984 (2004).

    CAS  PubMed  Google Scholar 

  52. O'Connell, M. J., Norbury, C. & Nurse, P. Premature chromatin condensation upon accumulation of NIMA. EMBO J. 13, 4926–4937 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lu, K. P. & Hunter, T. Evidence for a NIMA-like mitotic pathway in vertebrate cells. Cell 81, 413–424 (1995).

    CAS  PubMed  Google Scholar 

  54. Rosenblatt, J. Spindle assembly: asters part their separate ways. Nature Cell Biol. 7, 219–222 (2005).

    CAS  PubMed  Google Scholar 

  55. Robinson, J. T., Wojcik, E. J., Sanders, M. A., McGrail, M. & Hays, T. S. Cytoplasmic dynein is required for the nuclear attachment and migration of centrosomes during mitosis in Drosophila. J. Cell Biol. 146, 597–608 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Gönczy, P., Pichler, S., Kirkham, M. & Hyman, A. A. Cytoplasmic dynein is required for distinct aspects of MTOC positioning, including centrosome separation, in the one cell stage Caenorhabditis elegans embryo. J. Cell Biol. 147, 135–150 (1999).

    PubMed  PubMed Central  Google Scholar 

  57. Hebbar, S. et al. Lis1 and Ndel1 influence the timing of nuclear envelope breakdown in neural stem cells. J. Cell Biol. 182, 1063–1071 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Malone, C. J. et al. The C. elegans hook protein, ZYG-12, mediates the essential attachment between the centrosome and nucleus. Cell 115, 825–836 (2003).

    CAS  PubMed  Google Scholar 

  59. Salpingidou, G., Smertenko, A., Hausmanowa-Petrucewicz, I., Hussey, P. J. & Hutchison, C. J. A novel role for the nuclear membrane protein emerin in association of the centrosome to the outer nuclear membrane. J. Cell Biol. 178, 897–904 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Belmont, A. S. Mitotic chromosome structure and condensation. Curr. Opin. Cell Biol. 18, 632–638 (2006).

    CAS  PubMed  Google Scholar 

  61. Hirano, T. Chromosome cohesion, condensation, and separation. Annu. Rev. Biochem. 69, 115–144 (2000).

    CAS  PubMed  Google Scholar 

  62. Johansen, K. M. & Johansen, J. Regulation of chromatin structure by histone H3S10 phosphorylation. Chromosome Res. 14, 393–404 (2006).

    CAS  PubMed  Google Scholar 

  63. Xu, Y. X. & Manley, J. L. New insights into mitotic chromosome condensation: a role for the prolyl isomerase Pin1. Cell Cycle 6, 2896–2901 (2007).

    CAS  PubMed  Google Scholar 

  64. Hirota, T., Gerlich, D., Koch, B., Ellenberg, J. & Peters, J. M. Distinct functions of condensin I and II in mitotic chromosome assembly. J. Cell Sci. 117, 6435–6445 (2004).

    CAS  PubMed  Google Scholar 

  65. Ono, T., Fang, Y., Spector, D. L. & Hirano, T. Spatial and temporal regulation of condensins I and II in mitotic chromosome assembly in human cells. Mol. Biol. Cell 15, 3296–3308 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Margalit, A., Brachner, A., Gotzmann, J., Foisner, R. & Gruenbaum, Y. Barrier-to-autointegration factor — a BAFfling little protein. Trends Cell Biol. 17, 202–208 (2007).

    CAS  PubMed  Google Scholar 

  67. Bengtsson, L. & Wilson, K. L. Barrier-to-autointegration factor phosphorylation on Ser-4 regulates emerin binding to lamin A in vitro and emerin localization in vivo. Mol. Biol. Cell 17, 1154–1163 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Nichols, R. J., Wiebe, M. S. & Traktman, P. The vaccinia-related kinases phosphorylate the N' terminus of BAF, regulating its interaction with DNA and its retention in the nucleus. Mol. Biol. Cell 17, 2451–2464 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Audhya, A., Desai, A. & Oegema, K. A role for Rab5 in structuring the endoplasmic reticulum. J. Cell Biol. 178, 43–56 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Shibata, Y., Voeltz, G. K. & Rapoport, T. A. Rough sheets and smooth tubules. Cell 126, 435–439 (2006).

    CAS  PubMed  Google Scholar 

  71. Galy, V. et al. A role for gp210 in mitotic nuclear-envelope breakdown. J. Cell Sci. 121, 317–328 (2008).

    CAS  PubMed  Google Scholar 

  72. Liu, J., Prunuske, A. J., Fager, A. M. & Ullman, K. S. The COPI complex functions in nuclear envelope breakdown and is recruited by the nucleoporin Nup153. Dev. Cell 5, 487–498 (2003).

    CAS  PubMed  Google Scholar 

  73. Cotter, L., Allen, T. D., Kiseleva, E. & Goldberg, M. W. Nuclear membrane disassembly and rupture. J. Mol. Biol. 369, 683–695 (2007).

    CAS  PubMed  Google Scholar 

  74. Walczak, C. E. & Heald, R. Mechanisms of mitotic spindle assembly and function. Int. Rev. Cytol. 265, 111–158 (2008).

    CAS  PubMed  Google Scholar 

  75. Powers, M. A., Forbes, D. J., Dahlberg, J. E. & Lund, E. The vertebrate GLFG nucleoporin, Nup98, is an essential component of multiple RNA export pathways. J. Cell Biol. 136, 241–250 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Pritchard, C. E., Fornerod, M., Kasper, L. H. & van Deursen, J. M. RAE1 is a shuttling mRNA export factor that binds to a GLEBS-like NUP98 motif at the nuclear pore complex through multiple domains. J. Cell Biol. 145, 237–254 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Blower, M. D., Nachury, M., Heald, R. & Weis, K. A Rae1-containing ribonucleoprotein complex is required for mitotic spindle assembly. Cell 121, 223–234 (2005).

    CAS  PubMed  Google Scholar 

  78. Wong, R. W., Blobel, G. & Coutavas, E. Rae1 interaction with NuMA is required for bipolar spindle formation. Proc. Natl Acad. Sci. USA 103, 19783–19787 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Orjalo, A. V. et al. The Nup107–160 nucleoporin complex is required for correct bipolar spindle assembly. Mol. Biol. Cell 17, 3806–3818 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Galy, V., Askjaer, P., Franz, C., Lopez-Iglesias, C. & Mattaj, I. W. MEL-28, a novel nuclear-envelope and kinetochore protein essential for zygotic nuclear-envelope assembly in C. elegans. Curr. Biol. 16, 1748–1756 (2006).

    CAS  PubMed  Google Scholar 

  81. Belgareh, N. et al. An evolutionarily conserved NPC subcomplex, which redistributes in part to kinetochores in mammalian cells. J. Cell Biol. 154, 1147–1160 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Harel, A. et al. Removal of a single pore subcomplex results in vertebrate nuclei devoid of nuclear pores. Mol. Cell 11, 853–864 (2003).

    CAS  PubMed  Google Scholar 

  83. Loiodice, I. et al. The entire Nup107–160 complex, including three new members, is targeted as one entity to kinetochores in mitosis. Mol. Biol. Cell 15, 3333–3344 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Zuccolo, M. et al. The human Nup107–160 nuclear pore subcomplex contributes to proper kinetochore functions. EMBO J. 26, 1853–1864 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Joseph, J., Tan, S. H., Karpova, T. S., McNally, J. G. & Dasso, M. SUMO-1 targets RanGAP1 to kinetochores and mitotic spindles. J. Cell Biol. 156, 595–602 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Pichler, A., Gast, A., Seeler, J. S., Dejean, A. & Melchior, F. The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108, 109–120 (2002).

    CAS  PubMed  Google Scholar 

  87. Arnaoutov, A. et al. Crm1 is a mitotic effector of Ran-GTP in somatic cells. Nature Cell Biol. 7, 626–632 (2005).

    CAS  PubMed  Google Scholar 

  88. Salina, D., Enarson, P., Rattner, J. B. & Burke, B. Nup358 integrates nuclear envelope breakdown with kinetochore assembly. J. Cell Biol. 162, 991–1001 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Joseph, J., Liu, S. T., Jablonski, S. A., Yen, T. J. & Dasso, M. The RanGAP1–RanBP2 complex is essential for microtubule–kinetochore interactions in vivo. Curr. Biol. 14, 611–617 (2004).

    CAS  PubMed  Google Scholar 

  90. Vergnolle, M. A. & Taylor, S. S. Cenp-F links kinetochores to Ndel1/Nde1/Lis1/dynein microtubule motor complexes. Curr. Biol. 17, 1173–1179 (2007).

    CAS  PubMed  Google Scholar 

  91. Campbell, M. S., Chan, G. K. & Yen, T. J. Mitotic checkpoint proteins HsMAD1 and HsMAD2 are associated with nuclear pore complexes in interphase. J. Cell Sci. 114, 953–963 (2001).

    CAS  PubMed  Google Scholar 

  92. Li, Y. & Benezra, R. Identification of a human mitotic checkpoint gene: hsMAD2. Science 274, 246–248 (1996).

    CAS  PubMed  Google Scholar 

  93. Chen, R. H., Waters, J. C., Salmon, E. D. & Murray, A. W. Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores. Science 274, 242–246 (1996).

    CAS  PubMed  Google Scholar 

  94. Chen, R. H., Shevchenko, A., Mann, M. & Murray, A. W. Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores. J. Cell Biol. 143, 283–295 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Liu, S. T. et al. Human MPS1 kinase is required for mitotic arrest induced by the loss of CENP-E from kinetochores. Mol. Biol. Cell 14, 1638–1651 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Tighe, A., Staples, O. & Taylor, S. Mps1 kinase activity restrains anaphase during an unperturbed mitosis and targets Mad2 to kinetochores. J. Cell Biol. 181, 893–901 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Iouk, T., Kerscher, O., Scott, R. J., Basrai, M. A. & Wozniak, R. W. The yeast nuclear pore complex functionally interacts with components of the spindle assembly checkpoint. J. Cell Biol. 159, 807–819 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Scott, R. J., Lusk, C. P., Dilworth, D. J., Aitchison, J. D. & Wozniak, R. W. Interactions between Mad1p and the nuclear transport machinery in the yeast Saccharomyces cerevisiae. Mol. Biol. Cell 16, 4362–4374 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Taylor, S. S., Ha, E. & McKeon, F. The human homologue of Bub3 is required for kinetochore localization of Bub1 and a Mad3/Bub1-related protein kinase. J. Cell Biol. 142, 1–11 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Babu, J. R. et al. Rae1 is an essential mitotic checkpoint regulator that cooperates with Bub3 to prevent chromosome missegregation. J. Cell Biol. 160, 341–353 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Musacchio, A. & Salmon, E. D. The spindle-assembly checkpoint in space and time. Nature Rev. Mol. Cell Biol. 8, 379–393 (2007).

    CAS  Google Scholar 

  102. Jeganathan, K. B., Malureanu, L. & van Deursen, J. M. The Rae1–Nup98 complex prevents aneuploidy by inhibiting securin degradation. Nature 438, 1036–1039 (2005).

    CAS  PubMed  Google Scholar 

  103. Jeganathan, K. B., Baker, D. J. & van Deursen, J. M. Securin associates with APCCdh1 in prometaphase but its destruction is delayed by Rae1 and Nup98 until the metaphase/anaphase transition. Cell Cycle 5, 366–370 (2006).

    CAS  PubMed  Google Scholar 

  104. Peters, J. M. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nature Rev. Mol. Cell Biol. 7, 644–656 (2006).

    CAS  Google Scholar 

  105. Cuende, J., Moreno, S., Bolanos, J. P. & Almeida, A. Retinoic acid downregulates Rae1 leading to APCCdh1 activation and neuroblastoma SH-SY5Y differentiation. Oncogene 27, 3339–3344 (2008).

    CAS  PubMed  Google Scholar 

  106. Dawlaty, M. M. et al. Resolution of sister centromeres requires RanBP2-mediated SUMOylation of topoisomerase II. Cell 133, 103–115 (2008). Shows a requirement for the nucleoporin and SUMO E3 ligase RanBP2 in the resolution of sister chromatids during mitosis by directing sumoylation of topoisomerase IIα, ensuring its targeting to centromeres.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Hetzer, M., Gruss, O. J. & Mattaj, I. W. The Ran GTPase as a marker of chromosome position in spindle formation and nuclear envelope assembly. Nature Cell Biol. 4, E177–E184 (2002).

    CAS  PubMed  Google Scholar 

  108. Weis, K. Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell 112, 441–451 (2003).

    CAS  PubMed  Google Scholar 

  109. Harel, A. & Forbes, D. J. Importin beta: conducting a much larger cellular symphony. Mol. Cell 16, 319–330 (2004).

    CAS  PubMed  Google Scholar 

  110. Vagnarelli, P. et al. Condensin and Repo-Man–PP1 co-operate in the regulation of chromosome architecture during mitosis. Nature Cell Biol. 8, 1133–1142 (2006).

    CAS  PubMed  Google Scholar 

  111. Landsverk, H. B., Kirkhus, M., Bollen, M., Kuntziger, T. & Collas, P. PNUTS enhances in vitro chromosome decondensation in a PP1-dependent manner. Biochem. J. 390, 709–717 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Steen, R. L., Martins, S. B., Tasken, K. & Collas, P. Recruitment of protein phosphatase 1 to the nuclear envelope by A-kinase anchoring protein AKAP149 is a prerequisite for nuclear lamina assembly. J. Cell Biol. 150, 1251–1262 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Mora-Bermudez, F., Gerlich, D. & Ellenberg, J. Maximal chromosome compaction occurs by axial shortening in anaphase and depends on Aurora kinase. Nature Cell Biol. 9, 822–831 (2007).

    CAS  PubMed  Google Scholar 

  114. Ohsugi, M. et al. Kid-mediated chromosome compaction ensures proper nuclear envelope formation. Cell 132, 771–782 (2008). Identifies the chromokinesin KID as a major player in anaphase chromatin compaction and demonstrates its importance during mouse early development.

    CAS  PubMed  Google Scholar 

  115. Mazumdar, M. & Misteli, T. Chromokinesins: multitalented players in mitosis. Trends Cell Biol. 15, 349–355 (2005).

    CAS  PubMed  Google Scholar 

  116. Hetzer, M. et al. Distinct AAA-ATPase p97 complexes function in discrete steps of nuclear assembly. Nature Cell Biol. 3, 1086–1091 (2001).

    CAS  PubMed  Google Scholar 

  117. Ramadan, K. et al. Cdc48/p97 promotes reformation of the nucleus by extracting the kinase Aurora B from chromatin. Nature 450, 1258–1262 (2007). Shows that the requirement for the AAA+ ATPase p97 in chromatin decondensation and postmitotic nuclear assembly lies in the extraction of ubiquitylated Aurora B from chromatin.

    CAS  PubMed  Google Scholar 

  118. Lipp, J. J., Hirota, T., Poser, I. & Peters, J. M. Aurora B controls the association of condensin I but not condensin II with mitotic chromosomes. J. Cell Sci. 120, 1245–1255 (2007).

    CAS  PubMed  Google Scholar 

  119. Hsu, J. Y. et al. Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 102, 279–291 (2000).

    CAS  PubMed  Google Scholar 

  120. Hirota, T., Lipp, J. J., Toh, B. H. & Peters, J. M. Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 438, 1176–1180 (2005).

    CAS  PubMed  Google Scholar 

  121. Fischle, W. et al. Regulation of HP1–chromatin binding by histone H3 methylation and phosphorylation. Nature 438, 1116–1122 (2005).

    CAS  PubMed  Google Scholar 

  122. Mateescu, B., England, P., Halgand, F., Yaniv, M. & Muchardt, C. Tethering of HP1 proteins to chromatin is relieved by phosphoacetylation of histone H3. EMBO Rep. 5, 490–496 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Kourmouli, N. et al. Dynamic associations of heterochromatin protein 1 with the nuclear envelope. EMBO J. 19, 6558–6568 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Ye, Q. & Worman, H. J. Interaction between an integral protein of the nuclear envelope inner membrane and human chromodomain proteins homologous to Drosophila HP1. J. Biol. Chem. 271, 14653–14656 (1996).

    CAS  PubMed  Google Scholar 

  125. Polioudaki, H. et al. Histones H3/H4 form a tight complex with the inner nuclear membrane protein LBR and heterochromatin protein 1. EMBO Rep. 2, 920–925 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Sumara, I. et al. A Cul3-based E3 ligase removes Aurora B from mitotic chromosomes, regulating mitotic progression and completion of cytokinesis in human cells. Dev. Cell 12, 887–900 (2007).

    CAS  PubMed  Google Scholar 

  127. Sheehan, M. A., Mills, A. D., Sleeman, A. M., Laskey, R. A. & Blow, J. J. Steps in the assembly of replication-competent nuclei in a cell-free system from Xenopus eggs. J. Cell Biol. 106, 1–12 (1988).

    CAS  PubMed  Google Scholar 

  128. Walther, T. C. et al. The conserved Nup107–160 complex is critical for nuclear pore complex assembly. Cell 113, 195–206 (2003). This study, together with reference 82, demonstrates the pivotal role of the NUP107–160 complex in early steps of postmitotic NPC assembly.

    CAS  PubMed  Google Scholar 

  129. Boehmer, T., Enninga, J., Dales, S., Blobel, G. & Zhong, H. Depletion of a single nucleoporin, Nup107, prevents the assembly of a subset of nucleoporins into the nuclear pore complex. Proc. Natl Acad. Sci. USA 100, 981–985 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Walther, T. C. et al. RanGTP mediates nuclear pore complex assembly. Nature 424, 689–694 (2003).

    CAS  PubMed  Google Scholar 

  131. Harel, A. et al. Importin β negatively regulates nuclear membrane fusion and nuclear pore complex assembly. Mol. Biol. Cell 14, 4387–4396 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Rasala, B. A., Orjalo, A. V., Shen, Z., Briggs, S. & Forbes, D. J. ELYS is a dual nucleoporin/kinetochore protein required for nuclear pore assembly and proper cell division. Proc. Natl Acad. Sci. USA 103, 17801–17806 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Franz, C. et al. MEL-28/ELYS is required for the recruitment of nucleoporins to chromatin and postmitotic nuclear pore complex assembly. EMBO Rep. 8, 165–172 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Fernandez, A. G. & Piano, F. MEL-28 is downstream of the Ran cycle and is required for nuclear-envelope function and chromatin maintenance. Curr. Biol. 16, 1757–1763 (2006).

    CAS  PubMed  Google Scholar 

  135. Gillespie, P. J., Khoudoli, G. A., Stewart, G., Swedlow, J. R. & Blow, J. J. ELYS/MEL-28 chromatin association coordinates nuclear pore complex assembly and replication licensing. Curr. Biol. 17, 1657–1662 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Rasala, B. A., Ramos, C., Harel, A. & Forbes, D. J. Capture of AT-rich chromatin by ELYS recruits POM121 and NDC1 to initiate nuclear pore assembly. Mol. Biol. Cell 19, 3982–3996 (2008). References 80, 132–134 and 136 report on the identification of vertebrate ELYS and its C. elegans homologue MEL-28 as chromatin-targeting factors for the NUP107–160 complex and on their function in linking NPC assembly to chromatin.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Wilson, K. L. & Newport, J. A trypsin-sensitive receptor on membrane vesicles is required for nuclear envelope formation in vitro. J. Cell Biol. 107, 57–68 (1988).

    CAS  PubMed  Google Scholar 

  138. Pyrpasopoulou, A., Meier, J., Maison, C., Simos, G. & Georgatos, S. D. The lamin B receptor (LBR) provides essential chromatin docking sites at the nuclear envelope. EMBO J. 15, 7108–7119 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Wiese, C., Goldberg, M. W., Allen, T. D. & Wilson, K. L. Nuclear envelope assembly in Xenopus extracts visualized by scanning EM reveals a transport-dependent 'envelope smoothing' event. J. Cell Sci. 110, 1489–1502 (1997).

    CAS  PubMed  Google Scholar 

  140. Anderson, D. J. & Hetzer, M. W. Nuclear envelope formation by chromatin-mediated reorganization of the endoplasmic reticulum. Nature Cell Biol. 9, 1160–1166 (2007).

    CAS  PubMed  Google Scholar 

  141. Anderson, D. J. & Hetzer, M. W. Reshaping of the endoplasmic reticulum limits the rate for nuclear envelope formation. J. Cell Biol. 182, 911–924 (2008). This study, together with reference 140, provides evidence that postmitotic NE reformation occurs through reshaping of the ER on chromatin.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Stavru, F. et al. NDC1: a crucial membrane-integral nucleoporin of metazoan nuclear pore complexes. J. Cell Biol. 173, 509–519 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Hallberg, E., Wozniak, R. W. & Blobel, G. An integral membrane protein of the pore membrane domain of the nuclear envelope contains a nucleoporin-like region. J. Cell Biol. 122, 513–521 (1993).

    CAS  PubMed  Google Scholar 

  144. Liu, Q. et al. Functional association of Sun1 with nuclear pore complexes. J. Cell Biol. 178, 785–798 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Devos, D. et al. Components of coated vesicles and nuclear pore complexes share a common molecular architecture. PLoS Biol. 2, e380 (2004).

    PubMed  PubMed Central  Google Scholar 

  146. Brohawn, S. G., Leksa, N. C., Spear, E. D., Rajashankar, K. R. & Schwartz, T. U. Structural evidence for common ancestry of the nuclear pore complex and vesicle coats. Science 322, 1369–1373 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Ulbert, S., Platani, M., Boue, S. & Mattaj, I. W. Direct membrane protein–DNA interactions required early in nuclear envelope assembly. J. Cell Biol. 173, 469–476 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Gorjanacz, M. et al. Caenorhabditis elegans BAF-1 and its kinase VRK-1 participate directly in post-mitotic nuclear envelope assembly. EMBO J. 26, 132–143 (2007).

    CAS  PubMed  Google Scholar 

  149. Dechat, T. et al. LAP2α and BAF transiently localize to telomeres and specific regions on chromatin during nuclear assembly. J. Cell Sci. 117, 6117–6128 (2004).

    CAS  PubMed  Google Scholar 

  150. Haraguchi, T. et al. Live cell imaging and electron microscopy reveal dynamic processes of BAF-directed nuclear envelope assembly. J. Cell Sci. 121, 2540–2554 (2008).

    CAS  PubMed  Google Scholar 

  151. Daigle, N. et al. Nuclear pore complexes form immobile networks and have a very low turnover in live mammalian cells. J. Cell Biol. 154, 71–84 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Newport, J. W., Wilson, K. L. & Dunphy, W. G. A lamin-independent pathway for nuclear envelope assembly. J. Cell Biol. 111, 2247–2259 (1990).

    CAS  PubMed  Google Scholar 

  153. Macaulay, C. & Forbes, D. J. Assembly of the nuclear pore: biochemically distinct steps revealed with NEM, GTP gamma S, and BAPTA. J. Cell Biol. 132, 5–20 (1996).

    CAS  PubMed  Google Scholar 

  154. Baur, T., Ramadan, K., Schlundt, A., Kartenbeck, J. & Meyer, H. H. NSF- and SNARE-mediated membrane fusion is required for nuclear envelope formation and completion of nuclear pore complex assembly in Xenopus laevis egg extracts. J. Cell Sci. 120, 2895–2903 (2007).

    CAS  PubMed  Google Scholar 

  155. Antonin, W., Franz, C., Haselmann, U., Antony, C. & Mattaj, I. W. The integral membrane nucleoporin pom121 functionally links nuclear pore complex assembly and nuclear envelope formation. Mol. Cell 17, 83–92 (2005).

    CAS  PubMed  Google Scholar 

  156. Mapelli, M. & Musacchio, A. MAD contortions: conformational dimerization boosts spindle checkpoint signaling. Curr. Opin. Struct. Biol. 17, 716–725 (2007).

    CAS  PubMed  Google Scholar 

  157. D'Angelo, M. A., M., R., Panowski, S. H. & Hetzer, M. W. Age-dependent deterioration of nuclear pore complexes causes a loss of nuclear integrity in post-mitotic cells. Cell 136, 284–295 (2009). Provides the first evidence that a lack of NPC biogenesis in differentiated cells and the accumulation of age-dependent damage in nucleoporins lead to a deterioration of the NE permeability barrier.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Shcheprova, Z., Baldi, S., Frei, S. B., Gonnet, G. & Barral, Y. A mechanism for asymmetric segregation of age during yeast budding. Nature 454, 728–734 (2008).

    CAS  PubMed  Google Scholar 

  159. Collas, P., Courvalin, J. C. & Poccia, D. Targeting of membranes to sea urchin sperm chromatin is mediated by a lamin B receptor-like integral membrane protein. J. Cell Biol. 135, 1715–1725 (1996).

    CAS  PubMed  Google Scholar 

  160. Wagner, N. & Krohne, G. LEM-domain proteins: new insights into lamin-interacting proteins. Int. Rev. Cytol. 261, 1–46 (2007).

    CAS  PubMed  Google Scholar 

  161. Rolls, M. M. et al. A visual screen of a GFP-fusion library identifies a new type of nuclear envelope membrane protein. J. Cell Biol. 146, 29–44 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Schirmer, E. C., Florens, L., Guan, T., Yates, J. R. 3rd & Gerace, L. Nuclear membrane proteins with potential disease links found by subtractive proteomics. Science 301, 1380–1382 (2003).

    CAS  PubMed  Google Scholar 

  163. Dreger, M., Bengtsson, L., Schoneberg, T., Otto, H. & Hucho, F. Nuclear envelope proteomics: novel integral membrane proteins of the inner nuclear membrane. Proc. Natl Acad. Sci. USA 98, 11943–11948 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Fahrenkrog, B. & Aebi, U. The nuclear pore complex: nucleocytoplasmic transport and beyond. Nature Rev. Mol. Cell Biol. 4, 757–766 (2003).

    CAS  Google Scholar 

  165. Beck, M., Lucic, V., Forster, F., Baumeister, W. & Medalia, O. Snapshots of nuclear pore complexes in action captured by cryo-electron tomography. Nature 449, 611–615 (2007).

    CAS  PubMed  Google Scholar 

  166. Schwartz, T. U. Modularity within the architecture of the nuclear pore complex. Curr. Opin. Struct. Biol. 15, 221–226 (2005).

    CAS  PubMed  Google Scholar 

  167. De Souza, C. P. & Osmani, S. A. Mitosis, not just open or closed. Eukaryot. Cell 6, 1521–1527 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to all colleagues whose papers could not be covered owing to space limitations. We thank W. Antonin, P. Meraldi and I. Zemp for critical reading of the manuscript, Y. Barral, H. Meyer, I. Sumara and D. Gerlich for discussions and Y. Turgay for help with image acquisition. Our work is supported by the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Kutay.

Supplementary information

41580_2009_BFnrm2641_MOESM4_ESM.pdf

Supplementary information S1 (table) | Mitotic phosphorylation sites in nucleoporins and NE-associated proteins* (PDF 271 kb)

Related links

Related links

FURTHER INFORMATION

Ulrike Kutay's homepage

Glossary

Nuclear pore complex

(NPC). A multisubunit protein complex in the nuclear envelope that serves as a transport channel between the nucleus and the cytoplasm. NPCs are permeable for small molecules but restrict the passive diffusion of macromolecules larger than 30 kDa.

Nuclear lamina

A fibrous intermediate filament network that consists of lamins and underlies the inner nuclear membrane.

Kinetochore

A multimeric protein complex that is formed on centromeric DNA and mediates the attachment of spindle microtubules to chromosomes during mitosis.

Guanine nucleotide-exchange factor

A protein that catalyses the exchange of GDP for GTP on G proteins.

GTPase-activating protein

A factor that stimulates the intrinsic GTPase activity of small GTPases, thereby inducing the hydrolysis of bound GTP to GDP.

Nucleoporin

A protein constituent of the nuclear pore complex (NPC). Each NPC is composed of 30 different nucleoporins, which are present in multiples of 8, reflecting the eight-fold rotational symmetry of the NPC. Approximately one-third of nucleoporins contain Phe-Gly repeats that are binding sites for transport receptors.

Centrosome

The microtubule-organizing centre in animal cells. It consists of a pair of centrioles surrounded by the pericentriolar matrix. During mitosis, centrosomes serve as spindle poles.

Cyclin-dependent kinase

(CDK). A family of protein kinases, the activity of which depends on the formation of a complex with cyclin subunits. Different CDK–cyclin complexes orchestrate distinct steps in the cell cycle.

Nocodazole

A drug that inhibits the polymerization of microtubules. Nocodazole-treated cells enter mitosis but cannot form a mitotic spindle and consequently arrest in prometaphase.

Topoisomerase

An enzyme that binds to DNA and catalyses its unknotting by transiently breaking phosphodiester bonds.

Condensin

A five-subunit protein complex that is associated with mitotic chromosomes and is implicated in chromosome condensation. Two types of condensin complexes exist in vertebrate cells — condensin I and II — which share the ATPase subunits structural maintenance of chromosomes 2 (SMC2) and SMC4.

Reticulon

A member of the reticulon family of membrane proteins that are associated with the tubular endoplasmic reticulum (ER). Reticulons as well as members of the DP1/YOP1 protein family contain two long hydrophobic domains that are each proposed to insert as wedge-like hairpins into lipid bilayers and to promote the formation of ER tubules.

COPI

(Coatomer protein complex I). A cytosolic protein complex that is composed of seven polypeptides that coats membrane transport vesicles. The COPI complex is required for the formation of Golgi-derived vesicles for retrograde transport to the ER.

NUP107–160 complex

An essential, multimeric nucleoporin subcomplex that consists of 10 subunits. It is the major constituent of the central nuclear pore complex (NPC) scaffold and it symmetrically localizes to both sides of the NPC.

Centromere

A specialized heterochromatin region on each chromosome where sister chromatids are held together and on which the kinetochore is formed during mitosis.

RanBP2

(Ran-binding protein 2). The major constituent of the cytoplasmic filaments of the nuclear pore complex. RanBP2 has small ubiquitin-like modifier (SUMO) E3 ligase activity and forms a stable complex with sumoylated Ran GTPase-activating protein 1 (RanGAP1) throughout the cell cycle. Furthermore, it contains four Ran-binding domains, which facilitate the disassembly of RanGTP-containing export complexes.

SUMO

(Small ubiquitin-like modifier). A ubiquitin-like polypeptide that can be covalently attached to Lys residues on target proteins by an enzyme cascade. Unlike ubiquitin, it does not target proteins for proteasomal degradation. Attachment of SUMO to Ran GTPase-activating protein 1 (RanGAP1) is required for the localization of RanGAP to nuclear pore complexes in metazoan cells.

CRM1

A RanGTP-binding nuclear transport receptor that mediates the export of proteins that have Leu-rich nuclear export signals.

Cold-stable microtubules

Microtubules that resist depolymerization at low temperatures.

Haploinsufficient

A gene is haploinsufficient in a diploid organism when one functional allele is insufficient to maintain a wild-type state.

Securin

An inhibitor of the enzyme separase that cleaves the sister chromatin cohesion protein 1 (SCC1) subunit of cohesin to allow for sister chromatid separation.

Aneuploidy

Having too many or too few copies of a chromosome.

Sister chromatid

Two linked copies of a replicated chromosome that are the product of DNA replication. They are separated during the metaphase–anaphase transition of mitosis and then segregated into the two daughter cells.

Decatenation

The process in which rings or chains are untangled from each other. DNA sister chromatids become entangled or catenated as a consequence of DNA replication and must be decatenated to allow for sister chromatid separation and segregation during mitosis.

Anaphase bridge

Chromatin fibres that connect the two separating chromosome masses during anaphase. Anaphase bridges can lead to chromosome amplifications, translocations or deletions and are considered a hallmark of genomic instability.

Chromokinesin

A subgroup of molecular motors belonging to the kinesin family that associate with chromosome arms during mitosis.

Micronucleus

A nuclear envelope-enclosed chromosome (or group of chromosomes) that is not incorporated with most of the chromosomes into the newly formed nucleus during cell division.

AAA+ ATPase

(ATPase associated with various cellular activities). A protein that contains one or two ATP-binding domains, and that forms ring-like oligomers and functions in conformational remodelling of macromolecules.

Aurora B

A member of the Aurora family of Ser/Thr protein kinases. Aurora B is a component of the chromosome passenger complex and is required for several aspects of mitosis, such as kinetochore function, the spindle assembly checkpoint and cytokinesis.

E3 ubiquitin ligase

The last enzyme in a cascade of enzymes (E1, E2 and E3) that mediates the attachment of mono- or polyubiquitin to target proteins. E3 enzymes are binding platforms for E2 ligases and substrate proteins and thereby confer specificity to the ubiquitylation reaction.

Annulate lamellae

Stacks of membrane cisternae, usually localized in the cytoplasm, that are densely packed with nuclear pore complexes.

SNARE

(Soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor). A large protein family of membrane-anchored coiled-coil proteins that contribute to the specificity of membrane trafficking and promote membrane fusion.

ERC

(Extrachromosomal ribosomal DNA circle). A self-replicating, non-centromeric plasmid that is generated sporadically by homologous recombination in chromosomal repeats of ribosomal DNA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Güttinger, S., Laurell, E. & Kutay, U. Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nat Rev Mol Cell Biol 10, 178–191 (2009). https://doi.org/10.1038/nrm2641

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2641

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing